請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Hong-Bin Lu | en |
| dc.contributor.author | 盧宏斌 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:36:23Z | - |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-25 | |
| dc.identifier.citation | [1] K. J. Kennewell, M. Kostylev, N. Ross, R. Magaraggia, R. L. Stamps, M. Ali, A. A. Stashkevich, D. Greig, and B. J. Hickey. Magnetization pinning at a Py/Co interface measured using broadband inductive magnetometry. J. Appl. Phys., 108(073917), 2010.
[2] M. Kostylev. Strong asymmetry of microwave absorption by bilayer conducting ferromagnetic films in the microstrip-line based broadband ferromagnetic resonance. J. Appl. Phys., 106(043903), 2009. [3] Orhan Yalcin. Ferromagnetic Resonance - Theory and Applications. IntechOpen, 2013. [4] WenfengWang, Guozhi Chai, and Desheng Xue. Thickness dependent optical mode ferromagnetic resonance in Co/FeNi bilayer. J. Phys. D: Appl. Phys., 50(365003), 2017. [5] G. B. G. Stenning, L. R. Shelford, S. A. Cavill, F. Hoffmann, M. Haertinger, T. Hesjedal, G. Woltersdorf, G.J. Bowden, S. A. Gregory, C. H. Back, P. A. J. de Groot, and Gvan der Laan. Magnetization dynamics in an exchange-coupled NiFe/CoFe bilayer studied by x-ray detected ferromagnetic resonance. New J. Phys., 17(013019), 2015. [6] David S. Schmool, Arlete Apolinario, Francesca Casoli, and Franca Albertini. Ferromagnetic Resonance Study of Fe/FePt Coupled Films With Perpendicular Anisotropy. IEEE TRANSACTIONS ON MAGNETICS, 44(11), 2008. [7] Vamsi M. Chakka, Z. S. Shan, and J. P. Liu. Effect of coupling strength on magnetic properties of exchange spring magnets. J. Appl. Phys., 94(10), 2003. [8] T. Nagahama, K. Mibu, and T. Shinjo. The magnetization process and magnetoresistance of exchange-spring bilayer systems. J. Phys. D: Appl. Phys., 31:43–49, 1998. [9] Susumu Takeda, Hiroki Noguchi, Kumiko Nomura, Shinobu Fujita Shinobu Miwa, Eishi Arima, Takashi Nakada, and Hiroshi Nakamura. Low-power cache memory with state-of-the-art STT-MRAM for high-performance processors. In International SoC Design Conference (ISOCC), pages 153–154, 2015. [10] J. H. Hankiewicz, Z. Celinski, K. F. Stupic, N. R. Anderson, and R. E. Camley. Ferromagnetic particles as magnetic resonance imaging temperature sensors. Nat. Commun., 7(12415), 2016. [11] Kyongmo An, Xin Ma, Chi-Feng Pai, Jusang Yang, Kevin S. Olsson, James L. Erskine, Daniel C. Ralph, Robert A. Buhrman, and Xiaoqin Li. Current control of magnetic anisotropy via stress in a ferromagnetic metal waveguide. Phys. Rev. B, 93(140404), 2016. [12] V. G. Harris. Modern microwave ferrites. IEEE Trans. Magn., 48:1075–104, 2012. [13] C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, G. Stecklein, C. J. PalmstrØm, and P. A. Crowell. Dynamic detection of electron spin accumulation in ferromagnet semiconductor devices by ferromagnetic resonance. Nat. Commun., 7(10296), 2016. [14] S. Klingler, A. V. Chumak, T. Mewes, B. Khodadadi, C. Mewes, C Dubs, O. Surzhenko, B Hillebrands, and A. Conca. Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. J. Phys. D: Appl. Phys., 48(015001), 2015. [15] Charles Kittel. Introduction To Solid State Physics, 8th Edition. John Wiley & Sons Inc, 2004. [16] A. A. Baker, A. I. Figueroa, D. Pingstone, V. K. Lazarov, G. van der Laan, and T. Hesjedal. Spin pumping in magnetic trilayer structures with an MgO barrier. Sci. Rep., 6(35582), 2016. [17] Shandong Li, Cuiling Wang, Xian-Ming Chu, Guo-Xing Miao, Qian Xue, Wenqin Zou, Meimei Liu, Jie Xu, Qiang Li, Youyong Dai, Shishen Yan, Shishou Kang, Yunze Long, and Yueguang L¨u. Engineering optical mode ferromagnetic resonance in FeCoB films with ultrathin Ru insertion. Sci. Rep., 6(33349), 2016. [18] A. Layadi. A theoretical investigation of ferromagnetic resonance linewidth and damping constants in coupled trilayer and spin valve systems. AIP Advances, 5(057113), 2015. [19] Ankit Kumar, Fan Pan, Sajid Husain, Serkan Akansel, Rimantas Brucas, Lars Bergqvist, Sujeet Chaudhary, and Peter Svedlindh. Temperature-dependent Gilbert damping of Co2FeAl thin films with different degree of atomic order. Phys. Rev. B, 96(224425), 2017. [20] R. Hai and M. Kostylev. Theoretical study of the stripline ferromagnetic resonance response of metallic ferromagnetic films based on an analytical model. SPIN, 6(4, 1640015), 2016. [21] V. G. Baryakhtar. Theory of standing spin-wave damping. Low Temp. Phys., 40(626), 2014. [22] A. Yamaguchi, K. Motoi, H. Miyajima, T. Uchiyama, and Y. Utsumi. High-order standing spin wave modes in Fe19Ni81 micron wire observed by homodyne method. Journal of Physics: Conference Series, 266(012113), 2011. [23] Shuang Wu, Kyotaro Abe, Takuma Nakano, Tim Mewes, Claudia Mewes, G. J. Mankey, and Takao Suzuki. Thickness dependence of dynamic magnetic properties of soft (FeCo)-Si alloy thin films. Phys. Rev. B, 99(144416), 2019. [24] A. Martinsa, S.C. Trippeb, A.D. Santosb, and F. Pelegrinia. Spin-wave resonance and magnetic anisotropy in FePt thin films. Journal of Magnetism and Magnetic Materials, 308:120–125, 2007. [25] A. Conca, E. Th. Papaioannou, S. Klingler, J. Greser, T. Sebastian, B. Leven, J. L¨osch, and B. Hillebrands. Annealing influence on the Gilbert damping parameter and the exchange constant of CoFeB thin films. Appl. Phys. Lett., 104(182407):1–4, 2014. [26] Thibaut Devolder. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers. J. Appl. Phys., 119(153905), 2016. [27] C. J. Powell and J. B. Swan. Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium. Phys. Rev., 118(640), 1960. [28] Louis N´´eel. Magnetic surface anisotropy and superlattice formation by orientation. J. phys. radium, 15(225), 1954. [29] C. Kittel. Excitation of Spin Waves in a Ferromagnet by a Uniform rf Field. Phys. Rev., 110(1295), 1958. [30] P. E. Wigen, C. F. Kooi, M. R. Shanabarger, and Thomas D. Rossing. DYNAMIC PINNING IN THIN-FILM SPIN-WAVE RESONANCE. Phys. Rev. Lett., 9(5), 1962. [31] M. Kostylev, A. A. Stashkevich, A. O. Adeyeye, C. Shakespeare, N. Kostylev, N. Ross, K. Kennewell, R. Magaraggia, Y. Roussign´e, and R. L. Stamps. Magnetization pinning in conducting films demonstrated using broadband ferromagnetic resonance. J. Appl. Phys., 108(103914), 2010. [32] van der Laan G. Applications of soft x-ray magnetic dichroism. J. Phys.: Conf. Ser., 430(012127), 2013. [33] C. A. F. Vaz, C. Moutafis, and Raabe J. BuzziMand. X-ray excited optical luminescence of metal oxide single crystals. J. Electron Spectrosc. Relat. Phenom., 189:1–4, 2013. [34] A. G. Gurevich and G. A. Melkov. Magnetization Oscillations and Waves, 1st ed. CRC, Boca Raton, FL, 1996. [35] M. Vohl, J. Barnas, and P. Gruenberg. Effect of interlayer exchange coupling on spin-wave spectra in magnetic double layers: Theory and experiment. Phys. Rev. B, 39(12003), 1989. [36] Y. Chen, X. Fan, Y. Zhou, Y. Xie, J. Wu, T. Wang, S. T. Chui, and J. Q. Xiao. Designing and tuning magnetic resonance with exchange interaction. Adv. Mater., 27:1351–1355, 2015. [37] Ivan S. Maksymov and M. Kostylev. Impact of conducting nonmagnetic layers on the magnetization dynamics in thin-film magnetic nanostructures. J. Appl. Phys., 113(043927), 2013. [38] Eric E. Fullerton, J.S. Jiang, and S.D. Bader. Hard/soft magnetic heterostructures: model exchange-spring magnets. Journal of Magnetism and Magnetic Materials, 200:392–404, 1999. [39] R. Coehoorn, D. B. de Mooij, and C. de Waard. Meltspun permanent magnet materials containing Fe3B as the main phase. J. Magn. Magn. Mater, 80:101–104, 1989. [40] E. F. Kneller and R. Hawig. The exchange-spring magnet: A new material, principle for permanent magnets. IEEE Trans. Magn., 27:3588–3600, 1991. [41] Z. S. Shan, J. P. Liu, Vamsi M. Chakka, H. Zeng, and J. S. Jiang. Energy Barrier and Magnetic Properties of Exchange-Coupled Hard–Soft Bilayer. IEEE Trans. Magn., 38(5), 2002. [42] E. C. Stoner and E. P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn., 27:3475–3518, 1991. [43] Vasile Mihai Mecea. From Quartz Crystal Microbalance to Fundamental Principles of Mass Measurements. Analytical Letters, 38:753–767, 2005. [44] Guangming LiuEmai and Guangzhao Zhang. Basic Principles of QCM-D, pages 1–8. Springer, Berlin, Heidelberg, 2013. [45] R. A. Reck and D. L. Fry. Orbital and spin magnetization in Fe-Co, Fe-Ni, and Ni-Co. Phys. Rev., 184:492–5, 1969. [46] Serkan Akansel, Ankit Kumar, Vijayaharan A. Venugopal, Raquel Esteban-Puyuelo, Rudra Banerjee, Carmine Autieri, Rimantas Brucas, Nilamani Behera, Mauricio A. Sortica, Daniel Primetzhofer, Swaraj Basu, Mark A. Gubbins, Biplab Sanyal, and Peter Svedlindh. Enhanced Gilbert damping in Re-doped FeCo films: Combined experimental and theoretical study. Phys. Rev. B, 99(174408), 2019. [47] N. S. Almeida and D. L. Mills. Eddy currents and spin excitations in conducting ferromagnetic films. Phys. Rev. B, 53(18), 1996. [48] Chhavi Pahwa, Santhoshkumar Mahadevan, Sukhleen Bindra Narang, and Puneet Sharma. Structural, magnetic and microwave properties of exchange coupled and non-exchange coupled BaFe12O19/NiFe2O4 nanocomposites. J. Alloys Compd., 725:1175–1181, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21513 | - |
| dc.description.abstract | 根據我們的實驗結果,NiFe/CoFe的雙層膜在總厚度≧48.5 nm,頻
率>8 GHz的情況下可以觀察到兩個鐵磁共振(ferromagnetic resonance)的吸收峰,分別稱作光學模式(optical mode)和聲學模式(acoustic mode)。其中的光學模式的交換耦合磁場(exchange coupling field,H_ex)與NiFe和CoFe厚度的關係是,當NiFe厚度固定在43.5 nm並且CoFe厚度有改變時,H_ex ∝ t_CoFe的-0.6次方;而當CoFe厚度固定在30 nm並且NiFe厚度有改變時,H_ex ∝ t_NiFe的-1.88次方。藉由分析交換耦合磁場和有效磁化強度(effective magnetization, M_eff ),發現光學模式主要是CoFe磁矩進動(precession)的貢獻,而巨大的H_ex可用自旋駐波(standing spin wave)來解釋。 聲學模式的FMR訊號在NiFe厚度大於28.5 nm時M_eff幾乎是由NiFe的 磁矩貢獻;當NiFe厚度小於28.5 nm時,M_eff有NiFe和CoFe的貢獻。H_ex是由與磁矩同方向的,由兩種材料介面的磁矩釘作用(magnetization pinning)產生的有效磁場所造成的[1]。聲學模式的H_ex會隨CoFe和NiFe厚度增加而增大。兩個吸收峰大小隨著頻率變動的方式印證了過去其他人的理論預測,並可由微波在導體中的集膚效應(skin effect)來解釋[2]。量測磁滯曲線(hysteresis)的結果,飽和磁化強度(saturation magnetization)和矯頑力(coercivity, Hc)隨厚度的變化與理論值並不吻合,但有著相似的趨勢。 | zh_TW |
| dc.description.abstract | In our findings, when total thickness of NiFe/CoFe bilayer is ≧48.5 nm and frequency > 8 GHz, two ferromagnetic resonance peaks, which are called optical mode and acoustic mode, can be observed. The relation of exchange
coupling field (H_ex) of optical mode and thickness of CoFe and NiFe is that when NiFe thickness is fixed at 43.5 nm and we vary CoFe thickness, H_ex ∝ t_CoFe to the power of -0.6; when CoFe thickness is fixed at 30 nm and we vary NiFe thickness, H_ex ∝ t_NiFe to the power of -1.88. By analyzing H_ex and effective magnetization (M_eff), it is found that in optical mode, FMR signal is mainly contributed by CoFe, and the large H_ex can be explained by standing spin wave. In acoustic mode, when NiFe is thicker than 28.5 nm, FMR M_eff is mainly contributed by NiFe; when NiFe is thinner than 28.5 nm, FMR M_eff is contributed by NiFe and CoFe. H_ex is attributed to interface magnetization pinning, which provides a field that is parallel to the orientation of magnetization[1]. H_ex of acoustic mode increases with CoFe and NiFe thickness. The change of absorption peak amplitude with frequency meets previous theoretical calculation, and this behavior can be explained by skin effect of microwave in conductor[2]. The results of hysteresis loops show that the saturation magnetization Ms and coercivity Hc of different thickness do not fit well with the theory, but follow similar trends. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:36:23Z (GMT). No. of bitstreams: 1 ntu-108-R07222041-1.pdf: 15481375 bytes, checksum: a67677232fec85de72b0da9440b9fcd5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 v
Abstract vii 1 Introduction 1 2 Basic Concepts 5 2.1 Ferromagnetic Resonance 5 2.1.1 Landau-Lifshitz-Gilbert equation and Kittel’s formula 7 2.1.2 Linewidth and Gilbert damping coefficient 8 2.2 Two resonance modes 9 2.2.1 Exchange coupling field 9 2.2.2 Standing Spin Wave 10 2.2.3 Optical mode and Acoustic mode 12 2.2.4 Dynamic magnetization pinning 12 2.2.5 Evidence of phase difference : X-ray detected Ferromagnetic Resonance 14 2.2.6 Evidence of phase difference : Numerical calculation 16 2.3 Hard/Soft bilayer FMR 20 2.3.1 Normal Hard/Soft bilayer FMR 20 2.3.2 Exchange spring FMR 22 2.4 Hard/Soft bilayer magnetization and coercivity from hysteresis loops 23 3 Experimental Fabrication and Apparatus 27 3.1 Multifunctional ultra high vacuum chamber 27 3.1.1 Quartz crystal microbalance 28 3.1.2 Direct current magnetron sputtering 29 3.2 FMR measurement setup 30 3.3 Hysteresis measurement setup 31 3.4 Sample preparation 33 4 Results and Discussion 35 4.1 Single layer 35 4.1.1 NiFe 43.5 nm 35 4.1.2 CoFe 30 nm 39 4.2 Some common properties 41 4.2.1 Frequency dependence of peak amplitude 42 4.2.2 Small optical mode amplitude in very thin sample 43 4.3 First series: CoFe thickness fixed at 30 nm and NiFe thickness varies 44 4.3.1 Resonance field 46 4.3.2 Optical mode 47 4.3.3 Acoustic mode 52 4.4 Second series: NiFe thickness fixed at 43.5 nm and CoFe thickness varies 54 4.4.1 Resonance field 54 4.4.2 Optical mode 55 4.4.3 Acoustic mode 60 4.5 Influence of deposition order: CoFe 30 nm/ NiFe 28.5 nm 63 4.6 Hysteresis loops 64 4.6.1 First series: CoFe thickness fixed at 30 nm and NiFe thickness varies 65 4.6.2 Second series: NiFe thickness fixed at 43.5 nm and CoFe thickness varies 68 4.7 Discussion 70 5 Conclusion 73 Bibliography 75 | |
| dc.language.iso | en | |
| dc.title | 不同厚度下NiFe/CoFe兩個鐵磁共振態的變化 | zh_TW |
| dc.title | Thickness Dependence of Two Resonance Modes in NiFe/CoFe Bilayer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃斯衍(Ssu-Yen Huang),江文中(Wen-Chung Chiang),林秀豪(Hsiu-Hau Lin),張景皓(Ching-Hao Chang) | |
| dc.subject.keyword | 鐵磁共振,鎳鐵,鈷鐵,自旋駐波,光學模式,聲學模式, | zh_TW |
| dc.subject.keyword | ferromagnetic resonance,NiFe,CoFe,standing spin wave,optical mode,acoustic mode, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201901571 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-07-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 15.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
