Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊玉良(Yu-Liang Yang)
dc.contributor.authorKullyanee Panyawichaen
dc.contributor.author雅妮zh_TW
dc.date.accessioned2021-06-08T03:35:52Z-
dc.date.copyright2021-02-22
dc.date.issued2020
dc.date.submitted2021-02-03
dc.identifier.citationAlsteens D., Trabelsi H., Soumillion P. and Dufrene Y.F. (2013). Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nature Communications. 4: 2926–2933.
Alurappa R., Bojegowda M.R.M., Kumar V., Mallesh N.K. and Chowdappa S. (2014). Characterization and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Natural Product Research. 28(23): 2217–2220.
Amnuaykanjanasin A., Phonghanpot S., Sengpanich N., Cheevadhanarak S. and Tanticharoen M. (2009). Insect-specific polyketide synthases (PKSs), potential PKS nonribosomal peptide synthetase hybrids, and novel PKS clades in tropical fungi. Applied and Environmental Microbiology. 75(11): 3721–3732.
Amnuaykanjanasin A., Punya J., Swangmaneecharern P., Pinsupaa S., Nitistaporn P. Ponghanphota S., Kunathigan V., Cheevadhanarak S. and Tanticharoen M. (2015). Phylogeny of type I polyketide synthases (PKSs) in fungal entomopathogens and expression analysis of PKS genes in Beauveria bassiana BCC 2660. Fungal Biology. 119: 538–550.
Ball S. R., Kwan A. H. and Sunde M. (2019). Hydrophobin rodlets on the fungal cell wall. Current Topics in Microbiology and Immunology. 425: 29–51
Bayry J., Beaussart A., Dufrêne Y.F., Sharma M., Bansal K., Kniemeyer O., Aimanianda V., Brakhage A.A., Kaveri S.V., Kwon-Chung K.J., Latgé J.P. and Beauvais A. (2014). Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infection and Immunity. 82(8): 3141–3153.
Bin Z., Jun F. X., Leepika T. and Habtom W. R. (2012). LC-MS-based metabolomics. Molecular Omics. 8(2): 470–481.
Butt T.M., Coates C.J., Dubovskiy I.M. and Ratcliffe N.A. (2016). Entomopathogenic fungi: new insights into host–pathogen interactions. Advances in Genetics. 97: 307–364.
Chen Y.L., Montedonico A.E., Kauffman S, Dunlap J.R., Menn F.M. and Reynolds T.B. (2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Molecular Microbiology. 75: 1112–1132.
Daniel J., Silva A., Nakagawa D., Soman D.M., Lívia C., Mário T., Lucineli A., Lucas M.A. and Edson R.-F. (2016). Larvicidal activity of Beauveria bassiana extracts against Aedes aegypti and identification of beauvericins. Journal of the Brazilian Chemical Society. 28: 1003–1013.
de Hoffmann E. and Stroobant V. (2007). Mass spectrometry: Principles and Applications (Third Edition). Chichester, UK: Wiley.
Dufrêne Y., Ando T. and Garcia R. (2017). Imaging modes of atomic force microscopy for application in molecular and cell biology. Nature Nanotechnology. 12: 295–307.
Fujimura Y. and Miura D. (2014). MALDI mass spectrometry imaging for visualizing in Situ metabolism of endogenous metabolites and dietary phytochemicals. Metabolites. 4(2): 319–346.
Goettel M., Eilenberg J. and Glare T. (2010). Entomopathogenic fungi and their role and regulation of insect populations. Comprehensive Molecular Insect Science. 6: 361–406.
Hazen K.C. (1990). Cell surface hydrophobicity of medically important fungi especially Candida species. Microbial Cell Surface Hydrophobicity. American Society for Microbiology. 249–295.
Hertweck C., Luzhetskyy A., Rebets Y. and Bechthold A. (2007). Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Natural Product Reports. 24: 162–190.
Inglis G. D., Enkerli J. and Goettel M. S. (2012). Chapter VII—Laboratory techniques used for entomopathogenic fungi: Hypocreales. In L.A. Lacey (Ed.), Manual of Techniques in Invertebrate Pathology (Second Edition, 189–253). Cambridge, US: Academic Press.
Isaka M., Kittakoop P., Kirtikara K., Hywel-Jones N.L. and Thebtaranonth Y. (2005). Bioactive substances from insect pathogenic fungi. Accounts of Chemical Research. 38(10): 813–823.
Johansson M.W. (1999). Cell adhesion molecules in invertebrate immunity. Developmental and Comparative Immunology. 23: 303–315.
Kikankie C.K., Brooke B.D., Knols B.G.J., Koekemoer L.L., Farenhorst M., Hunt R.H., Thomas M.B. and Coetzee M. (2010). The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Malaria Journal. 9: 71-89.
Litwin A., Nowak M. and Różalska S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology. 19: 23–42.
Livak K.J. and Schmittgen T.D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 25:402–408.
Ly A., Buck A. and Balluff B. (2016). High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nature Protocols. 11(8): 1428–1443.
Madeira A., Paulo J.A. and Florencio M. (2012). Applications of tandem mass spectrometry: from structural analysis to fundamental studies. InTech. 3–32
Marshall Z.K. (1991). The importance of studying microbial cell surfaces. Microbial Cell Surface Analysis. 3–19.
Mc Namara L., Dolan S.K., Walsh J.M.D., Stephens J.C., Glare T.R., Kavanagh K. and Griffin C.T. (2019). Oosporein an abundant metabolite in Beauveria caledonica with a feedback induction mechanism and a role in insect virulence. Fungal Biology. 123(8): 601–610.
Mochizuki K., Ohmori K., Tamura H., Shizuri Y., Nishiyama S., Miyoshi E. and Yamamura S. (1993). The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bulletin of the Chemical Society of Japan. 66: 3041–3046.
Molnár I., Gibson D. and Krasnoff, S. (2010). Secondary metabolites from entomopathogenic hypocrealean fungi. Natural Product Reports. 27: 1241–1275.
Nothias L.F., Nothias-Esposito M. and Silva R. (2018). Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. Journal of Natural Products. 81(4): 758–767.
Parasuraman S., Subramani B., Selvadurai M., Kalaimani J.K. and Venugopal V. (2014). An overview of liquid chromatography-mass spectroscopy instrumentation. Pharmaceutical Methods. 5(2): 47–55.
Paul B., Ma H., Snook L. and Dahms T. (2012). High-resolution imaging and force spectroscopy of fungal hyphal cells by atomic force microscopy. Laboratory Protocols in Fungal Biology. 10: 151–160.
Pihet M., Vandeputte P., Tronchin G., Renier G., Saulnier P., Georgeault S., Mallet R., Chabasse D., Symoens F. and Bouchara J.P. (2009). Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiology. 9: 177-187.
Punya J., Amnuaykanjanasin A., Swangmaneecharern P., Pinsupaa, S., Nitistaporn, P., Ponghanphota, S., Kunathigan, V., Cheevadhanarak, S. and Tanticharoen M. (2015). Phylogeny of type I polyketide synthases (PKSs) in fungal entomopathogens and expression analysis of PKS genes in Beauveria bassiana BCC 2660. Fungal Biology. 119: 538-550.
Ren J.L., Zhang A.H., Konga L. and Wang X.J. (2018). Advances in mass spectrometry based metabolomics for investigation of metabolites. RSC Advances. 40: 22335–22350.
Rutherford S. and Bassler B. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine. 1(2): 11–26.
Sandhu S.S., Harshita S., Ravindra P. A., Suneel K. and Shyamji S. (2017). Efficacy of Entomopathogenic fungi 17 as green pesticides: current and prospects. Microorganisms for Green Revolution. 6: 327–349.
Sauer S., Lange B.M., Gobom J., Nyarsik L., Seitz H. and Lehrach H. (2005). Miniaturization in functional genomics and proteomics. Nature Reviews Genetics. 6: 465–476.
Sedio B.E., Boya P.C.A. and Rojas E.J.C. (2018). A protocol for high-throughput, untargeted forest community metabolomics using mass spectrometry molecular networks. Applications in Plant Sciences. 6(3): 1033–1045.
Schümann J. and Hertweck C. (2006). Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. Journal of Biotechnology. 124: 690–703.
Singh T., Saikia R., Jana T., and Arora D. (2004). Hydrophobicity and surface electrostatic charge of conidia of the mycoparasitic Trichoderma species. Mycological Progress. 3: 219–228.
Srisuksam C., Punya J., Wattanachaisaereekul S., Toopaang W., Cheevadhanarak S., Tanticharoen M. and Amnuaykanjanasin A. (2018). The reducing clade IIb polyketide synthase PKS14 acts as a virulence determinant of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiology Letters. 365: 3–31.
Strasser H., Vey A. and Butt T. M. (2000). Are There any Risks in Using Entomopathogenic Fungi for Pest Control, with Particular Reference to the Bioactive Metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Science and Technology. 10(6): 717–735.
Trevijano C.N. and Zaragoza O. (2019). Immune response of Galleria mellonella against Human Fungal Pathogens. Journal of Fungi. 5(1): 3–15.
Veličković D., Zhang G., Bezbradica D., Bhattacharjee A., Ljiljana P.T., Sharma K. Alexandrov T., Christopher R.A. and KPMP Consortium. (2020). Response Surface methodology as a new approach for finding optimal MALDI matrix spraying parameters for mass spectrometry imaging. Journal of the American Society for Mass Spectrometry. 31(3): 508–516.
Wang J., Wang H.A., Zhang C., Wu T., Ma Z. and Chen Y. (2019). Phospholipid homeostasis plays an important role in fungal development, fungicide resistance and virulence in Fusarium graminearum. Phytopathology Research. 1(16): 1–12.
Wang J., Zhang R., Chen X., Sun X., Yan Y., Shen X. and Yuan Q. (2020). Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microbial cell factory. 19: 110–121
Wang X., Gong X., Li P., Lai D., and Zhou L. (2018). Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules (Basel, Switzerland), 23(1): 169-217.
Weaver E. M. and Hummon A. B. (2013). Imaging mass spectrometry: from tissue sections to cell cultures. Advanced Drug Delivery Reviews. 65(8): 1039–1055.
Xiao G., Ying S.H., Zheng P., Wang Z.L., Zhang S., Xie Q., Shang Y., Leger R. J.S., Zhao G. P. and Wang C. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports. 2: 403–412.
Xu Y., Orozco R., Kithsiri Wijeratne E.M., Espinosa-Artiles P., Leslie Gunatilaka A.A., Patricia Stock S. and Molnár I. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology. 46(5): 353–364.
Xu Y., Zhan J., Wijeratne E.M., Burns A.M., Gunatilaka A.A. and Molnár I. (2007). Cytotoxic and Antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. Journal of Natural Products. 70(9): 1467–1471.
Xu Y.J., Luo F., Gao Q., Shang Y. and Wang C. (2015). Metabolomics reveals insect metabolic responses associated with fungal infection. Analytical and Bioanalytical Chemistry. 407(16): 4815–4821.
Xu Y., Orozco R., Wijeratne K., Gunatilaka A.A., Patricia S.S. and Molnár I. (2008). Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chemistry and Biology. 15(9): 898–907.
Udompaisarn S., Toopaang W., Sae-Ueng U., Srisuksam C., Wichienchote N., Wasuwan R., Amalina N., Tanticharoen, M. and Amnuaykanjanasin A. (2020). The polyketide synthase PKS15 has a crucial role in cell wall formation in Beauveria bassiana. Scientific Reports. 10: 12630–12645.
Urbaniak M., Stępień Ł. And Uhlig S. (2019). Evidence for naturally produced beauvericins containing N-methyltyrosine in hypocreales. Toxins. 11(3): 182–192.
Vallejo M.C., Nakayasu E.S., Longo L.V.G., Ganiko L., Lopes F.G. and Matsuo A.L. (2012). Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLOS One. 7(6): 39463–39472.
Vertyporokh L., Hułas-Stasiak M. and Wojda I. (2020). Host-pathogen interaction after infection of Galleria mellonella with the filamentous fungus Beauveria bassiana. Insect Science. 27(5): 1079–1089.
Vivekanandhan P., Kavitha T., Karthi S., Senthil-Nathan S. and Shivakumar M.S. (2018). Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). International Journal of Environmental Research and Public Health. 15(3): 440–450.
Vey A., Hoagland R. E. and Butt T. M. (2001). Toxic metabolites of fungal biocontrol agents in fungi as biocontrol agents: progress, problems and potential. Wallingford, Oxon, GBR: CABI Publishing. 51: 518–521.
Zimmermann G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology. 17(5): 553–596.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21498-
dc.description.abstract白僵菌 (Beauveria bassiana) 為一種蟲生病原真菌,目前已做為生物防治劑並用於控制蟲害。此白僵菌以穿透昆蟲宿主外表皮的方式感染宿主,並將其菌絲入侵到昆蟲的血淋巴中。白僵菌可生成許多與昆蟲致病力有關的小分子代謝物。前人研究發現pks14是白僵菌致病過程的關鍵因子之一,因pks14只在白僵菌感染昆蟲時表現,在體外培養的條件下則不表現。在本研究中,我們使用大蠟蛾 (Galleria mellonella) 為昆蟲宿主,探討PKS14在昆蟲致病及調控二次代謝物的功能。結果顯示,相較於野生型及pks14失活突變株,感染pks14過度表現株的幼蟲,在感染二至四天後的致死率較高。利用原子力顯微鏡觀察發現,野生型白僵菌的分生孢子表面具有棒狀束簇,但pks14失活突變及過度表現的菌株則呈現無定形的表面,不具棒狀結構特徵。此現象說明PKS14可能與細胞壁的形成有關。 此外,我們利用LC-MS/MS、分子網路,及影像質譜分析探討pks14失活突變及過度表現菌株在體外及體內模式的代謝物特徵,發現pks14過度表現株會生產較多的cyclodepsipeptides、磷脂質,及脂肪酸,此說明pks14基因表現可能會促進其致病因子的生合成。zh_TW
dc.description.abstractEntomopathogenic fungus Beauveria bassiana has been used as a biological control agent to manage pest insects. Through physical infected mechanism, B. bassiana infects the insect host by penetration through the external cuticle. The hypha penetrates the insect and invades the hemolymph of the insect. Likewise, B. bassiana produces numerous low molecular weight metabolites that play an important role in determining their virulence. The previous study demonstrated that pks14 only expresses in vivo (infected insect) rather than in vitro cultural condition, which is important for fungal pathogenesis. In this study, we used Galleria mellonella as a model to evaluate the functional role of PKS14 in the insect pathogenesis and the regulation of secondary metabolites. The result showed that the mortality of B. bassiana pks14 overexpression infected larva was higher than the wild type and the pks14 null mutant infected larva at two to four days after inoculation. Atomic force microscopy revealed that the conidia surfaces of wild type possessed the rodlet bundles or fascicles while pks14 null mutant and pks14 overexpression strains were lacking the rodlet and showing amorphous surface, implying that PKS14 might be involved in cell wall formation. Further, we revealed the metabolic profiles of pks14 gene overexpression strain and pks14 null mutant strain in vitro and in vivo using LC-MS/MS, molecular networking, and imaging mass spectrometry analysis. We found that B. bassiana pks14 overexpression strain produced more cyclodepsipeptides, phospholipids, and fatty acids than pks14 null mutant strain in vitro and in vivo, which demonstrated that the pks14 gene expression would enhance the biosynthesis of the fungal virulence factors.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:35:52Z (GMT). No. of bitstreams: 1
U0001-2101202115162800.pdf: 3389058 bytes, checksum: 00b4b73d120b567c7a7eba07e09b6223 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
Acknowledgement i
摘要 ii
Abstract iii
List of figures vi
List of table viii
Abbreviations ix
Chapter 1. Introduction 1
1.1 Entomopathogenic fungus Beauveria bassiana 1
1.2 Mode of action of B. bassiana 2
1.3 Secondary metabolites of entomopathogenic fungi 3
1.4 Conidial surface analysis by Atomic force microscopy (AFM) 10
1.5 Metabolomics analysis 11
Chapter 2. Materials and Methods 14
2.1 Fungal strains and culture conditions 14
2.2 Gene expression analysis of pks14 14
2.3 Analysis of the conidia surface by atomic force microscopy 15
2.4 Fungal - insect pathogenesis assay 16
2.5 Fungal crude extract - insect toxicity assay 16
2.6 Hyphal body formation in insect hemolymph assay 16
2.7 Fungal crude extraction (In vitro) 17
2.8 Insect-fungus crude extraction (In vivo) 17
2.9 Metabolomics analysis of Beauveria bassiana (In vitro) 18
2.10 Metabolomics analysis of B. bassiana (In vivo) 19
2.11 In situ metabolomics: Imaging mass spectrometry of B. bassiana infected larvae 19
Chapter 3. Results 21
3.1 The fungus stains and morphology 21
3.2 PKS14 Gene expression in B. bassiana 22
3.3 Analysis of conidial surface by atomic force microscopy (AFM) 23
3.4 Insect pathogenesis assay 24
3.4.1 Fungal cells injection 24
3.4.2 Crude extract injection 25
3.4.3 Hyphal body information in insect hemolymph assay 26
3.5 Metabolomics analysis 27
3.5.1 Metabolomics analysis of Beauveria bassiana (In vitro) 27
3.5.2 Metabolomics analysis of Beauveria bassiana (In vivo) 30
3.5.3 Tandem mass spectrometry 34
3.6 MALDI- IMS analysis 36
Chapter 4. Discussion 39
Chapter 5. Conclusion 45
References I
Appendix a
dc.language.isoen
dc.title昆蟲致病真菌白僵菌聚酮合成基因pks14調控的代謝體分析zh_TW
dc.titleMetabolomics analysis of the entomopathogenic fungus Beauveria bassiana regulated by the polyketide synthase gene pks14en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖志中(Chih-Chuang Liaw),乃育昕(Yu-Shin Nai)
dc.subject.keyword白僵菌 (Beauveria bassiana),聚酮合成酶,昆蟲致病性,zh_TW
dc.subject.keywordBeauveria bassiana,polyketide synthase,insect pathogenesis,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202100114
dc.rights.note未授權
dc.date.accepted2021-02-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-2101202115162800.pdf
  未授權公開取用
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved