Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証
dc.contributor.authorGuo-Cheng Lyuen
dc.contributor.author呂國誠zh_TW
dc.date.accessioned2021-06-08T03:35:46Z-
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-29
dc.identifier.citation[1] J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320-322 (2000).
[2] T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[3] M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation, Elsevier, New York (1969).
[4] I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications, Springer, USA (2010).
[5] L. V. Hau, S. E. Harries, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[6] X. Liu, Q. Wang, C. Li, C. Zhao, and Y. Zhao, “Characteristics of slow light from coupled fiber ring resonators,” Instrum. Sci. Technol. 44, 115-126 (2016).
[7] F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Topics Quantum Electron. 14, 706-712 (2008).
[8] Y. C. Lin, C. H. Tsou, W. J. Hsueh, “Ultra-slow light in one-dimensional cantor photonic crystals,” Opt. Lett. 43, 4120-4123 (2018).
[9] S. E. Miller, Optical Fiber Telecommunications, Elsevier, New York, (2012).
[10] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2079-2102 (1969).
[11] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).
[12] L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626-628 (2004).
[13] J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456-458 (2006).
[14] S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reaction, and transmission in optical waveguide-ring resonator systems,” J. Opt. Soc. Am. B. 23, 834-841 (2006).
[15] M. Forst, J. Niehusmann, T. Plotzing, J. Bolten, T. Wahlbrink, C. Moormann and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett. 32, 2046-2048 (2007).
[16] F. Xia, L. Sekaric and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71 (2007).
[17] F. Morichetti, A. Melloni, C. Ferrari and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16, 8395-8405 (2008).
[18] J. Yang, N.K. Fontaine, Z. Pan, A.O. Karalar, S.S. Djordjevic, C. Yang, W. Chen, S. Chu, B.E. Little and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Tech. Lett. 20, 1030-1032 (2008).
[19] M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherja, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguide,” Opt. Express 18, 26505-26516 (2010).
[20] J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18, 26525-26534 (2010).
[21] P. V. Korolenko, A. Y. Mishin, and Y. V. Ryzhikova, “Scaling in the characteristics of a periodic multilayer structure,” J. Opt. Soc. Am. 79, 754-757 (2012).
[22] J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22, 817-823 (2014).
[23] Z. Zhang, G. I. Ng, T. Hu, H. Qiu, X. Guo, M. S. Rouifed, C.Y. Liu and H. Wang, “Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system,” Opt. Express 24, 25665-25675 (2016).
[24] A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photonics 2, 096101 (2017).
[25] A. Li and W. Bogaerts, “Backcoupling manipulation in silicon ring resonators,” Photonics Research 6, 620-629 (2018).
[26] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[27] Y. Yang, I. I. Kravchenko, D. P. Briggs and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nature Communications 5, 5753 (2014).
[28] Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).
[29] M. Tomita, K. Totsuka, R. Hanamura and T. Matsumoto, “Tunable fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813-818 (2009).
[30] A. Naweed, “Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators,” Opt. Express 23, 12573-12581 (2015).
[31] M. Huang, S. Li, M. Xue, L. Zhao and S. Pan, “Flat-top optical resonance in a single-ring resonator based on manipulation of fast- and slow-light effects,” Opt. Express 26, 23215-23220 (2018).
[32] T. Kato, Y. Kokubun, “Optimum coupling coefficients in second order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol. 24, 991-999 (2006).
[33] T. Baba, “Slow light in photonic crystals,” Nature Photonics 2, 465–473 (2008).
[34] A. Nitkowski, L. Chen and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930-11936 (2008).
[35] G. A. Adib, Y. M. Sabry and D. Khalil, “Analysis of dual coupler nested coupled cavities,” Applied Optics 56, 9457-9468 (2017).
[36] A. Akhavan, H. Ghafoorifard, S. Abdolhosseini and H. Habibiyan, “Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator,” Applied Optics 56, 9556-9563 (2017).
[37] J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell and D.J. Moss, “Micro-ring resonator quality factor enhancement via an integrated fabry-perot cavity,” APL Photonics 2, 056103 (2017).
[38] M. Casalino, “Design of resonant cavity-enhanced schottky graphene/silicon photodetectors at 1550 nm,” J. Lightwave Technol. 36, 1766-1774 (2018).
[39] R. Luo, Y. He, H. Liang, M. Li, J. Ling and Q. Lin, “Cavity-enhanced optical parametric generation in a modal-phase-matched lithium niobate microring,” Phys. Rev. Applied 11 (2019).
[40] Z. Yang and J. E. Sipe, “Increasing the delay-time–bandwidth product for microring resonator structures by varying the optical ring resonances,” Opt. Lett. 32, 918-920 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21495-
dc.description.abstract本論文主要研究具共振腔耦合微環共振器之慢光效應。利用轉移矩陣法計算出電磁波在共振器內的耦合及傳遞行為,並與準週期 Cantor 序列的雙耦合微環共振器做慢光頻譜上的比較。再觀察在不同結構參數設定下之穿透率、相位、群延遲、群速度與延遲頻寬乘積之變化。首先介紹有關微環內之波導與電磁波理論以及耦合微環共振器原理。並進一步推導串聯耦合微環之轉移矩陣以及有關慢光特性之公式。本文比較兩種結構中共振腔對耦合微環共振器之慢光效應影響。會先說明共振腔在耦合微環共振器中的共振條件,並討論改變不同參數設定後對慢光特性之影響。另一方面,分析準週期Cantor 序列中類似多共振腔的特性,並比
較類似多共振腔結構的差異性。研究結果顯示,在兩種結構下皆可以找到符合共振條件的完美穿透峰值,並且具共振腔耦合微環結構產生的共振峰值會發生在穿透頻譜之禁帶中心,比準週期 Cantor 結構有較佳的慢光特性。此特性結果可以應用在窄帶濾波器、光緩衝器、光感測儀器、光學增益器。
zh_TW
dc.description.abstractThis thesis mainly studies slow light in coupled microring resonators with cavities. The transfer matrix method is used to simulate the coupling and transmission behavior of electromagnetic waves in resonators. Slow-spectral spectrum is compared with the double-coupled micro-ring resonators of the quasi-periodic Cantor sequence. The transmittance, phase shift, group delay, group velocity and delay bandwidth product under different structural parameters are also studied. Firstly, the theory of waveguide and electromagnetic wave in microrings and the principle of coupled microring resonators are introduced. The transfer matrix of the series coupled microrings and the formula of the slow light characteristics are further derived. This thesis compares the effects of cavities on the slow-light effects of coupled micro-ring resonators in two structures. The resonance conditions of the resonant cavity in the coupled micro-ring resonator will be explained first, and the influence of the different parameter settings on the slow light characteristics will be discussed. On the other hand, the characteristics of the multi-cavities in the quasi-periodic Cantor sequence are analyzed, and the differences of the multi-resonator structure are compared. The results show that the perfect penetration peaks satisfying the resonance conditions can be found under both structures, and the resonance peak generated by cavities will occur at the center of the forbidden band of the penetrating spectrum. It will also have better slow light characteristics compared with the quasi-periodic Cantor structure. The result of this feature can be applied to narrowband filters, optical buffers, optical sensors and optical enhancement.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:35:46Z (GMT). No. of bitstreams: 1
ntu-108-R06525033-1.pdf: 7662714 bytes, checksum: 2133ec8d9603c2c9c323eb01bd1d1e47 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要.................................. i
Abstract ................................ ii
目錄...................................... iii
圖目錄.............................. v
符號表..................................... ix
第一章 導論........................................... 1
1.1 背景與研究動機........................................ 1
1.2 歷史文獻回顧.............................. 3
1.3 論文架構................................... 5
第二章 波導理論與耦合微環共振器之原理..... 6
2.1 波導理論................................... 6
2.2 耦合微環共振器....................... 10
2.3 串聯耦合微環共振器的光傳輸............... 13
2.4 慢光特性之公式推導............................. 18
第三章 具共振腔耦合微環共振器之慢光特性.............. 23
3.1 共振腔環半徑對慢光特性之影響.............. 26
3.2 共振環半徑對慢光特性之影響................... 33
3.3 環數對慢光特性之影響.............................. 38
3.4 耦合係數對慢光特性之影響...................... 44
第四章 Cantor 耦合微環共振器之慢光特性 ............. 51
4.1 共振環半徑對慢光特性之影響.................. 53
4.2 階數對慢光特性之影響......................... 58
4.3 耦合係數對慢光特性之影響........................ 64
第五章 結論與展望...................... 70
5.1 結論.................................... 70
5.2 未來展望............................ 71
參考文獻....... 72
dc.language.isozh-TW
dc.title具共振腔耦合微環之慢光特性zh_TW
dc.titleSlow Light in Coupled Microring Resonators with Cavitiesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭勝文,黃俊穎,鄭宇翔
dc.subject.keyword耦合微環共振器,共振腔,Cantor,zh_TW
dc.subject.keywordmicroring resonators,cavities,Cantor,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201901978
dc.rights.note未授權
dc.date.accepted2019-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved