Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21486
標題: 導入自適應帶寬核心密度估計以建構機率估計樹
Combining decision tree and adaptive kernel density estimation to construct probability estimation tree
作者: Yen-Jung Liu
劉晏茸
指導教授: 歐陽彥正
關鍵字: 核心密度估計,解釋性,機率估計樹,登革熱,決策樹,
kernel density estimation,interpretable,probability estimation tree,dengue fever,decision tree,
出版年 : 2019
學位: 碩士
摘要: 在眾多機器學習方法中,決策樹(decision tree)的流程圖有別於許多機器學習方法為黑盒子模型(black-box model),擁有高解讀性的優點。然而在決策樹中僅能提供該組別粗略的機率估計,其中以頻率估計法及Laplace機率估計法最廣為人知,但這兩種機率的估計方法僅能提供每個節點內的測試資料(testing data)有相同的機率估計,無法得知節點內每個人的差異化機率估計,機率估計樹(probability estimation tree),提供節點內每個人擁有差異化的機率估計值。本篇實驗中嘗試了六種不同的模擬資料集,導入自適應核心密度(adaptive kernel density estimation)估計建構機率估計樹,相較於固定帶寬的核心密度估計,在兩群體間分類模糊地帶間,最佳的改善情況為誤差下降了約31%。在應用上,機率估計樹的方法在公共衛生領域偵測登革熱(Dengue fever)上,可以幫助醫生在更短的時間內了解病人被預測為登革熱的狀況。
Apart from many machine learning methods, the decision rule are black-box models. Decision tree’s flow chart has the advantage of high interpretation While, decision tree produces poor class probability estimation. Among the methods of probability estimation, the frequency estimation method and the Laplace probability estimation method are the most widely known, but these two methods can only provide the same probability estimation for the testing data in each node. Probability estimation tree provides differentiate probability for every individual person in one node. In our study, combining decision tree and adaptive kernel density estimation, at the fuzzy zone between the two groups ,among six different simulated data sets the best improvement in probability estimation against fixed kernel density estimation is 31% error reduction approximately. In application, machine learning methods in dengue fever detection, can support doctors to grasp the situation of patients predicted to be dengue in a shorter period of time.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21486
DOI: 10.6342/NTU201902114
全文授權: 未授權
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.2 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved