請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21435
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊嘉揚(Jia-Yang Juang) | |
dc.contributor.author | Chia-Ling Hung | en |
dc.contributor.author | 洪嘉伶 | zh_TW |
dc.date.accessioned | 2021-06-08T03:34:00Z | - |
dc.date.copyright | 2019-08-12 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-05 | |
dc.identifier.citation | [1] R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics, vol. 4, no. 2, 2010.
[2] R. P. Gerard H. Markx, “Dielectrophoretic separation of cells: Continuous separation,” Can. J. Microbiol., vol. 17, no. 7, pp. 879–888, 2010. [3] N. Lewpiriyawong, C. Yang, and Y. C. Lam, “Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes,” Electrophoresis, vol. 31, no. 15, pp. 2622–2631, 2010. [4] Y. Zhao, J. Brcka, J. Faguet, and G. Zhang, “Elucidating the DEP phenomena using a volumetric polarization approach with consideration of the electric double layer,” Biomicrofluidics, vol. 11, no. 2, pp. 1–17, 2017. [5] H. Park, M. T. Wei, and H. D. Ou-Yang, “Dielectrophoresis force spectroscopy for colloidal clusters,” Electrophoresis, vol. 33, no. 16, pp. 2491–2497, 2012. [6] Y. Zhao, J. Brcka, J. Faguet, and G. Zhang, “Elucidating the mechanisms of two unique phenomena governed by particle-particle interaction under DEP : Tumbling motion of pearl chains and alignment of ellipsoidal particles,” Micromachines, vol. 9, no. 6, pp. 279–294, 2018. [7] X. Peng, “A one-square-millimeter compact hollow structure for microfluidic pumping on an all-glass chip,” Micromachines, vol. 7, no. 4, pp. 63–72, 2016. [8] L. A. N. Julius, V. K. Jagannadh, I. J. Michael, R. Srinivasan, and S. S. Gorthi, “Design and validation of on-chip planar mixer based on advection and viscoelastic effects,” Biochip J., vol. 10, no. 1, pp. 16–24, 2016. [9] R. S. Thomas, H. Morgan, and N. G. Green, “Negative DEP traps for single cell immobilisation,” Lab Chip, vol. 9, no. 11, pp. 1534–1540, 2009. [10] P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images.,” Nature, vol. 436, no. 7049, pp. 370–372, 2005. [11] P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip, pp. 281–282, 2012. [12] J. Oblak, D. Križaj, S. Amon, A. Maček-Lebar, and D. Miklavčič, “Feasibility study for cell electroporation detection and separation by means of dielectrophoresis,” Bioelectrochemistry, vol. 71, no. 2, pp. 164–171, 2007. [13] J. K. Valley et al., “Preimplantation mouse embryo selection guided by light-induced dielectrophoresis,” PLoS One, vol. 5, no. 4, pp. 1–8, 2010. [14] M. Dürr, J. Kentsch, T. Müller, T. Schnelle, and M. Stelzle, “Microdevices for manipulation and accumulation of micro‐and nanoparticles by dielectrophoresis,” Electrophoresis, vol. 24, no. 4, pp. 722–731, 2003. [15] S. M. Yang, S. Y. Tseng, H. P. Chen, L. Hsu, and C. H. Liu, “Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip,” Lab Chip, vol. 13, no. 19, pp. 3893–3902, 2013. [16] H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J., vol. 77, no. 1, pp. 516–525, 1999. [17] K. Zhu, A. S. Kaprelyants, E. G. Salina, and G. H. Markx, “Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis,” Biomicrofluidics, vol. 4, no. 2, pp. 1–11, 2010. [18] P. R. C. Gascoyne and S. Shim, “Isolation of circulating tumor cells by dielectrophoresis,” Cancers (Basel)., vol. 6, no. 1, pp. 545–579, 2014. [19] N. Lewpiriyawong and C. Yang, “Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter,” Electrophoresis, vol. 35, no. 5, pp. 714–20, 2014. [20] K. Khoshmanesh et al., “On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis,” Microfluid. Nanofluidics, vol. 12, no. 1–4, pp. 597–606, 2012. [21] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, “Dielectrophoretic Sorting of Particles and Cells in a Microsystem,” Anal. Chem., vol. 70, no. 9, pp. 1909–1915, 1998. [22] K. Khoshmanesh et al., “Dielectrophoretic-activated cell sorter based on curved microelectrodes,” Microfluid. Nanofluidics, vol. 9, no. 2–3, pp. 411–426, 2010. [23] M. S. Pommer et al., “Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels,” Electrophoresis, vol. 29, no. 6, pp. 1213–1218, 2008. [24] H. Shafiee, M. B. Sano, E. A. Henslee, J. L. Caldwell, and R. V Davalos, “Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP),” Lab Chip, vol. 10, no. 4, pp. 438–445, 2010. [25] N. Piacentini, G. Mernier, R. Tornay, and P. Renaud, “Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation,” Biomicrofluidics, vol. 5, no. 3, pp. 1–8, 2011. [26] K. Cheung, S. Gawad, and P. Renaud, “Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation,” Cytom. Part A, vol. 65, no. 2, pp. 124–132, 2005. [27] L. Yang, “Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips,” Talanta, vol. 80, no. 2, pp. 551–558, 2009. [28] P. Sabounchi, A. M. Morales, P. Ponce, L. P. Lee, B. A. Simmons, and R. V. Davalos, “Sample concentration and impedance detection on a microfluidic polymer chip,” Biomed. Microdevices, vol. 10, no. 5, pp. 661–670, 2008. [29] M. Castellarnau, A. Errachid, C. Madrid, A. Juárez, and J. Samitier, “Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli,” Biophys. J., vol. 91, no. 10, pp. 3937–3945, 2006. [30] Y. J. Lo et al., “Derivation of the cell dielectric properties based on Clausius-Mossotti factor,” Appl. Phys. Lett., vol. 104, no. 11, 2014. [31] L. Zheng, J. P. Brody, and P. J. Burke, “Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly,” Biosens. Bioelectron., vol. 20, no. 3, pp. 606–619, 2004. [32] M. P. Hughes, H. Morgan, F. J. Rixon, J. P. H. Burt, and R. Pethig, “Manipulation of herpes simplex virus type 1 by dielectrophoresis,” Biochim. Biophys. Acta - Gen. Subj., vol. 1425, no. 1, pp. 119–126, 1998. [33] D. M. Pai and B. E. Springett, “Physics of electrophotography,” Rev. Mod. Phys., vol. 65, no. 1, pp. 163–211, 1993. [34] R. C. Hayward, D. A. Saville, and I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunablemicropatterns,” Nature, vol. 404, pp. 56–59, 2000. [35] M. Ozkan, S. N. Bhatia, and S. C. Esener, “Optical Addressing of Polymer Beads for Chip-Based Systems,” Sensors Mater., vol. 14, no. 4, pp. 189–197, 2002. [36] P. Y. Chiou, Z. Chang, M. C. Wu, and L. Angeles, “A novel optoelectronic tweezer using light induced dielectrophoresis,” 2003 IEEE/LEOS Int. Conf. Opt. MEMS, pp. 8–9, 2003. [37] P. Y. Chiou, “Massively parallel optical manipulation of single cells, micro- and nano-particles on optoelectronic devices,” University of California at Berkeley Doctor Thesis, 2005. [38] A. Salmanzadeh, M. B. Sano, H. Shafiee, M. a Stremler, and R. V Davalos, “Isolation of rare cancer cells from blood cells using dielectrophoresis,” Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 590–593, 2012. [39] D. J. Griffith, Introduction to Electrodynamics. Prentice Hall International, Inc., 1981. [40] D. L. House, H. Luo, and S. Chang, “Numerical study on dielectrophoretic chaining of two ellipsoidal particles,” J. Colloid Interface Sci., vol. 374, no. 1, pp. 141–149, 2012. [41] S. Kumar and P. J. Hesketh, “Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling,” Sensors Actuators, B Chem., vol. 161, no. 1, pp. 1198–1208, 2012. [42] C. Rosales and K. M. Lim, “Numerical comparison between Maxwell stress method and equivalent multipole approach for calculation of the dielectrophoretic force in single-cell traps,” Electrophoresis, vol. 26, pp. 2057–2065, 2005. [43] X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat., vol. 39, no. 4, pp. 277–295, 1997. [44] Y. J. Lo and U. Lei, “Quasistatic force and torque on a spherical particle under generalized dielectrophoresis in the vicinity of walls,” Appl. Phys. Lett., vol. 95, no. 25, pp. 2007–2010, 2009. [45] M. T. Wei, J. Junio, and D. H. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics, vol. 3, no. 1, pp. 1–8, 2009. [46] T. Honegger, K. Berton, E. Picard, and D. Peyrade, “Determination of Clausius-Mossotti factors and surface capacitances for colloidal particles,” Appl. Phys. Lett., vol. 98, no. 18, pp. 2009–2012, 2011. [47] J. Lyklema and M. Minor, “On surface conduction and its role in electrokinetics,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 140, no. 1–3, pp. 33–41, 1998. [48] N. G. Green and H. Morgan, “Dielectrophoresis of submicrometer latex spheres. 1. experimental results,” J. Phys. Chem. B, vol. 103, no. 1, pp. 41–50, 1999. [49] M. P. Hughes, H. Morgan, and M. F. Flynn, “The dielectrophoretic behaviour of submicron latex spheres: Influence of surface conductance,” J. Colloid Interface Sci., vol. 220, no. 2, pp. 454–457, 1999. [50] M. P. Hughes and H. Morgan, “Dielectrophoretic characterization and separation of antibody-coated submicrometer latex spheres,” Anal. Chem., vol. 71, no. 16, pp. 3441–3445, 1999. [51] E. Station and D. Nemours, “The dielectric behavior of colloidal particles with an electric double-layer,” Phys. Rev., vol. 519, no. 57, pp. 583–591, 1932. [52] J. Hansen, “Effective interactions between electric double layers,” Annu. Rev. Phys. Chem., vol. 51, pp. 209–242, 2000. [53] J. Friend and L. Yeo, “Fabrication of microfluidic devices using polydimethylsiloxane,” Biomicrofluidics, vol. 4, pp. 1–5, 2010. [54] T. Honegger and D. Peyrade, “Dielectrophoretic properties of engineered protein patterned colloidal particles,” Biomicrofluidics, vol. 6, no. 4, pp. 1–12, 2012. [55] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, no. 4, pp. 156–159, 1970. [56] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett., vol. 57, no. 3, pp. 314–318, 1986. [57] and T. Y. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, pp. 9–11, 1987. [58] D. Grover et al., “Optical trapping and manipulation of viruses and bacteria,” Science (80-. )., vol. 7035, no. 1984, 1986. [59] N. Eom, V. Stevens, B. Wedding, R. Sedev, and J. Connor, “Probing fluid flow using the force measurement capability of optical trapping,” Adv. Powder Technol., vol. 25, no. 4, pp. 1249–1253, 2014. [60] C. A. R. Jones et al., “Micromechanics of cellularized biopolymer networks,” Proc. Natl. Acad. Sci., vol. 112, no. 37, pp. E5117–E5122, 2015. [61] J. Wang, M. T. Wei, J. A. Cohen, and H. D. Ou-Yang, “Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe,” Electrophoresis, vol. 34, no. 13, pp. 1915–1921, 2013. [62] T. B. Jones, Electromechanics of particles. Cambridge, 1996. [63] 孫捷, “探討電雙層及電液動效應對介電泳現象之影響,” 國立臺灣大學碩士論文, 2018. [64] 高濂、孫靜、劉陽橋, 奈米粉體的分散及表面改性. 五南出版社, 2005. [65] J. C. Berg, An introduction to interfaces and colloids. World Scientific, 2010. [66] M. Elimelech and C. R. O’Melia, “Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids,” Colloids and Surfaces, vol. 44, pp. 165–178, 1990. [67] J. Gileadi, E.; Kirowa-Eisner, E,; Penciner, “Interfacial electrochemistry: An experimental approach,” Interfacial Electrochem. An Exp. approach, vol. 54, no. 4, p. A245, 1977. [68] W. Norde, J. Buijs, and H. Lyklema, “Adsorption of globular proteins,” Fundam. Interface Colloid Sci., pp. 1–59, 2005. [69] M. A. Brown, A. Goel, and Z. Abbas, “Effect of electrolyte concentration on the stern layer thickness at a charged interface,” Angew. Chemie - Int. Ed., vol. 55, no. 11, pp. 3790–3794, 2016. [70] M. A. Brown et al., “Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface,” Phys. Rev. X, vol. 6, no. 1, pp. 1–12, 2016. [71] K. Words, “Letter to the editor AC electric-field-induced fluid flow in microelectrodes,” J. Colloid Interface Sci., vol. 422, no. 2, pp. 420–422, 1999. [72] A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: A review of forces in microelectrode structures,” J. Phys. D. Appl. Phys., vol. 31, pp. 2338–2353, 1998. [73] 呂昀緯, “光鉗輔助量測並量化電液動流對微粒子在不同溶液導 電度及抓取位置下之介電泳交越頻率影響,” 國立臺灣大學碩士論文, 2018. [74] C. C. Mei, Environmental fluid mechanics,stokes flow past a sphere. MIT, 2002. [75] G. Ahmadi, Particle Transport, deposition and removal-II. Clarkson University, 2015. [76] E. Loth, “Drag of non-spherical solid particles of regular and irregular shape,” Powder Technol., vol. 182, no. 3, pp. 342–353, 2008. [77] D. Leith, “Drag on nonspherical objects,” Aerosol Sci. Technol., vol. 6, no. 2, pp. 153–161, 1987. [78] S. N. Rogak and R. C. Flagan, “Stokes drag on self-similar clusters of spheres,” J. Colloid Interface Sci., vol. 134, no. 1, pp. 206–218, 1990. [79] T. M. Crowder, J. A. Rosati, J. D. Schroeter, A. J. Hickey, and T. B. Martonen, “Fundamental effects of particle morphology on lung delivery: Predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development,” Pharm. Res., vol. 19, no. 3, pp. 239–245, 2002. [80] R. He, S. Chen, F. Yang, and B. Wu, “Dynamic diffuse double-layer model for the electrochemistry of nanometer-sized electrodes,” J. Phys. Chem. B, vol. 110, no. 7, pp. 3262–3270, 2006. [81] X. Yang and G. Zhang, “The effect of an electrical double layer on the voltammetric performance of nanoscale interdigitated electrodes: A simulation study,” Nanotechnology, vol. 19, no. 46, 2008. [82] X. Yang and G. Zhang, “Simulating the structure and effect of the electrical double layer at nanometre electrodes,” Nanotechnology, vol. 18, no. 33, 2007. [83] N. G. Green, A. Ramos, A. González, H. Morgan, and A. Castellanos, “Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., vol. 66, no. 2, pp. 1–11, 2002. [84] R. Hatsuki, F. Yujiro, and T. Yamamoto, “Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy,” Microfluid. Nanofluidics, vol. 14, no. 6, pp. 983–988, 2013. [85] 陳奕安, “光鉗輔助量測微粒子介電泳性質之方法及微粒子尺寸與電極設計的影響,” 國立臺灣大學碩士論文, 2016. [86] I. S. Park, S. H. Park, D. S. Yoon, S. W. Lee, and B. M. Kim, “Direct measurement of the dielectrophoresis forces acting on micro-objects using optical tweezers and a simple microfluidic chip,” Appl. Phys. Lett., vol. 105, no. 10, 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21435 | - |
dc.description.abstract | 近年來介電泳現象被廣泛用於生物晶片及實驗室晶片技術等,藉由改變外加交流電場頻率、溶液種類與導電度等,即可操控或是分類溶液中不同粒徑或材質之微粒子,而在探討介電泳現象時,微粒子置於溶液中形成之電雙層不可被忽略,其存在對微粒子導電度有相當大之影響,因其能大幅提高粒子整體導電度。
本研究在實驗部分利用光鉗系統搭配鎖相放大器過濾掉雜訊以提升雜訊比,去量測單、雙顆球形粒子之交越頻率,透過訊號產生器輸入一調幅頻率,以微粒子振動相位變化量測交越頻率,並且在量測時利用壓電控制器控制載台將被光鉗捕捉之粒子移動至適當位置,避免電滲、電熱等電液動流場干擾,影響微粒子運動導致模擬與量測結果不符,在到達交越頻率時,鎖相放大器會出現明顯的相位差,此方法能夠準確量測交越頻率。 而本研究在模擬部分利用不同於以往常見的計算方法去分析微粒子介電泳性質,過去通常假設電雙層之表面電導為定值,不過表面電導實際上會因離子吸附作用而改變,故本研究根據Zhao等人發展出的體積積分法為參考,將模擬與量測數據擬合得到初始表面電荷密度,針對不同溶液導電度、粒子粒徑及表面官能基去分析交越頻率,並將電滲、電熱等電液動流場效應納入考慮再與量測結果比較,以及透過模型設定不同幾何形狀擴展此方法之應用,探討多顆粒子與單顆粒子之交越頻率關係,以及在有無表面官能基的條件下,粒子之體積與表面之電雙層涵蓋面積變化率去解釋交越頻率的變化趨勢以及其他不同幾何參數條件會對交越頻率產生什麼影響。 經過量測與模擬結果得知,交越頻率與粒子電荷吸附量、史吞層導電度、粒子的粒徑形狀以及表面官能基相關,並發現交越頻率與粒徑有特定比例關係,而依據不同表面官能基條件,透過兩粒子粒徑重疊的比例發現交越頻率會隨著體積與表面積變化率的不同影響力而會有所差異,以及在串聯多顆粒子情況下,交越頻率不僅會與粒子數n-0.095成正比,且此正比關係不受粒子性質、大小與溶液導電度影響,因此可藉由已知的單顆球形粒子交越頻率估算,由此單顆球形粒子串聯而成的多顆粒子,交越頻率為多少。 | zh_TW |
dc.description.abstract | In recent years, the phenomenon of dielectrophoresis (DEP) has been widely implemented to Lab-on-chip technology. By simply changing the frequency of the external AC electric field, the type of medium and medium conductivity, we are able to manipulate micro-particles with various sizes and dielectric properties. When considering the DEP, one cannot ignore the effect of electric double layer (EDL) that forms around the micro-particle, the presence of EDL will make the conductivity of the particles rise drastically.
In this study, we use the optical tweezers, amplitude modulation (AM) input and lock-in amplifier to filter out the noise and improve the signal/noise ratio (S/N ratio) in order to detect the vibration signal phase of the single and two-sphere particle. The noise is not coherent, so it cannot pass though the lock-in amplifier. In the measurement, the piezoelectric controller is used to control the stage to move the particles captured by the optical tweezers to an appropriate position to avoid electrohydrodynamic flow such as electro-osmosis and electrothermal effect, which affects the movement of the micro-particles and causes the simulation and measurement results to be inconsistent. At the crossover frequency, the particle motion experiences a sharp change of phase shift by 180°, relative to the phase of the amplitude modulation frequency. Therefore, we can obtain the precise crossover frequency. The simulation uses different calculation methods different from the previous method to analyze the dielectrophoretic properties of the micro particles. In the past, it was assumed that the surface conductance of the particle was constant, but the surface conductance actually changed due to ion adsorption. Therefore, the study refers to the volumetric integration method from Zhao et al. After the simulation and measurement data were fitted to obtain the initial surface charge density, we analyzed the crossover frequency under the condition of different particle size, functional group and charge adsorption and took electrohydrodynamic flow effect into account and compared with the measurement results. In addition, the crossover frequency relationship between multi-particles and single particle was discussed by setting different geometric shapes of model. And we discuss the volume of the particles and the surface area of electric double layer change rate in the presence or absence of surface functional groups to explain the trend of the crossover frequency and the influence of other different geometric parameters on the crossover frequency. From the measurement and simulation results, the crossover frequency is related to the charge adsorption amount, the electric double layer conductivity, the particle size and shape and the functional group of the particle. It is found that the crossover frequency has a specific proportional relationship with the particle size. According to the different functional group conditions, the crossover frequency will be different according to the difference of the volume and surface area change rate. And in the case of multi-particles, the crossover frequency is not only proportional to the number of particles n-0.095, and this proportional relationship is not affected by the particle properties, size and conductivity of the solution. Therefore, it is possible to estimate the crossover frequency of multi-particle by the known crossover frequency of single particle. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:34:00Z (GMT). No. of bitstreams: 1 ntu-108-R06522502-1.pdf: 7398439 bytes, checksum: 91c2788d163a3e36474959cfed366eb6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目錄 vii 表目錄 x 圖目錄 xi 符號表 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧與相關理論 3 2.1 文獻回顧 3 2.2 介電泳介紹 5 2.3 電雙層介紹與粒子導電度修正 6 2.3.1 電雙層現象介紹[52] 6 2.3.2 粒子導電度修正 8 2.4 體積積分法 9 2.4.1 考慮粒子極化之現象 11 2.4.2 電雙層結構與離子吸附作用 13 2.5 交流電滲與電熱造成之流體效應 16 第三章 有限元素法模型之建立與邊界條件設定 19 3.1 介電泳模擬 19 3.1.1 基本假設 19 3.1.2 幾何尺寸設定 19 3.1.3 材料參數設定 21 3.1.4 統御方程式 22 3.1.5 邊界條件 23 3.1.6 網格劃分 24 3.1.7 數值理論應用 25 3.2 交流電滲模擬 26 3.2.1 基本假設 26 3.2.2 幾何尺寸設定 26 3.2.3 材料參數設定 27 3.2.4 統御方程式 28 3.2.5 邊界條件 29 3.2.6 網格劃分 30 3.2.7 數值理論應用 31 3.3 電熱效應模擬 31 3.3.1 基本假設 31 3.3.2 幾何尺寸設定 32 3.3.3 材料參數設定 33 3.3.4 統御方程式 33 3.3.5 邊界條件 34 3.3.6 網格劃分 35 3.3.7 數值理論應用 35 第四章 實驗方法與材料 36 4.1 光鉗系統 36 4.1.1 光鉗系統架構 36 4.1.2 力模組校正光鉗彈力係數 38 4.2 電極製程 39 4.2.1 光罩設計 39 4.2.2 電極製作流程改良 40 4.3 實驗方法 43 4.3.1 微粒子與介質溶液材料性質 43 4.3.2 樣本製備 43 4.3.3 交越頻率量測方法 44 4.3.4 實驗儀器架設 47 第五章 結果與討論 49 5.1 不同溶液導電度與粒徑之比較 49 5.1.1 單顆粒子模擬與實驗結果比較 49 5.1.2 雙顆粒子模擬與實驗結果比較 54 5.1.3 單雙顆粒子量測結果比較 58 5.2 幾何參數對微粒子之交越頻率影響 64 5.2.1 單顆球形粒子粒徑大小比較 64 5.2.2 相同體積不同形狀粒子比較 66 5.2.3 不同表面官能基粒子之表面積與體積變化比較 68 5.3 微粒子串聯顆數與交越頻率之關係 72 第六章 結論與未來展望 78 6.1 結論 78 6.2 未來展望 80 參考文獻 81 附錄 產品證明書 90 | |
dc.language.iso | zh-TW | |
dc.title | 多顆微粒子之介電泳交越頻率的量測與模擬分析 | zh_TW |
dc.title | Measurement and Analysis of the Crossover Frequency for Multiple Micro Particles | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊燿州(Yao-Joe Yang),李明蒼(Ming-Tsang Lee),蔡佳霖(Jia-Lin Tsai) | |
dc.subject.keyword | 介電泳,光鉗,電雙層,電液動,多顆微粒子,交越頻率, | zh_TW |
dc.subject.keyword | Dielectrophoresis,optical tweezers,electric double layer,electrohydrodynamics,n-sphere micro particles,crossover frequency, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201902420 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 7.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。