Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建甫(Chien-Fu Chen)
dc.contributor.authorWen-Hsuan Wangen
dc.contributor.author王文軒zh_TW
dc.date.accessioned2021-06-08T03:32:38Z-
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citation[1] A. Dinsmore, M. F. Hsu, M. Nikolaides, M. Marquez, A. Bausch, and D. Weitz, 'Colloidosomes: selectively permeable capsules composed of colloidal particles,' Science, vol. 298, no. 5595, pp. 1006-1009, 2002.
[2] H. Chen et al., 'Highly compressed assembly of deformable nanogels into nanoscale suprastructures and their application in nanomedicine,' ACS nano, vol. 5, no. 4, pp. 2671-2680, 2011.
[3] X. C. Yang et al., 'Drug delivery using nanoparticle‐stabilized nanocapsules,' Angewandte Chemie International Edition, vol. 50, no. 2, pp. 477-481, 2011.
[4] E. Dickinson, 'Food emulsions and foams: stabilization by particles,' Current Opinion in Colloid & Interface Science, vol. 15, no. 1-2, pp. 40-49, 2010.
[5] R. Langer, 'Drug delivery and targeting,' NATURE-LONDON-, pp. 5-10, 1998.
[6] R. Tamate, T. Ueki, and R. Yoshida, 'Evolved Colloidosomes Undergoing Cell‐like Autonomous Shape Oscillations with Buckling,' Angewandte Chemie International Edition, vol. 55, no. 17, pp. 5179-5183, 2016.
[7] Y. Lin, H. Skaff, T. Emrick, A. Dinsmore, and T. P. Russell, 'Nanoparticle assembly and transport at liquid-liquid interfaces,' Science, vol. 299, no. 5604, pp. 226-229, 2003.
[8] H. Skaff et al., 'Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking,' Advanced Materials, vol. 17, no. 17, pp. 2082-2086, 2005.
[9] D. Liu et al., 'Black Gold: Plasmonic Colloidosomes with Broadband Absorption Self‐Assembled from Monodispersed Gold Nanospheres by Using a Reverse Emulsion System,' Angewandte Chemie International Edition, vol. 54, no. 33, pp. 9596-9600, 2015.
[10] H. Duan, D. Wang, N. S. Sobal, M. Giersig, D. G. Kurth, and H. Möhwald, 'Magnetic colloidosomes derived from nanoparticle interfacial self-assembly,' Nano letters, vol. 5, no. 5, pp. 949-952, 2005.
[11] K. L. Thompson, M. Williams, and S. P. Armes, 'Colloidosomes: synthesis, properties and applications,' Journal of colloid and interface science, vol. 447, pp. 217-228, 2015.
[12] L. Lei, X. Tang, P. Zhu, Z. Kang, T. Kong, and L. Wang, 'Spreading-induced dewetting for monolayer colloidosomes with responsive permeability,' Journal of Materials Chemistry B, vol. 5, no. 30, pp. 6034-6041, 2017.
[13] B. P. Binks and J. H. Clint, 'Solid wettability from surface energy components: relevance to Pickering emulsions,' Langmuir, vol. 18, no. 4, pp. 1270-1273, 2002.
[14] Z. Niu, J. He, T. P. Russell, and Q. Wang, 'Synthesis of nano/microstructures at fluid interfaces,' Angewandte Chemie International Edition, vol. 49, no. 52, pp. 10052-10066, 2010.
[15] M. F. Hsu et al., 'Self-assembled shells composed of colloidal particles: fabrication and characterization,' Langmuir, vol. 21, no. 7, pp. 2963-2970, 2005.
[16] D. Lee and D. A. Weitz, 'Double emulsion‐templated nanoparticle colloidosomes with selective permeability,' Advanced Materials, vol. 20, no. 18, pp. 3498-3503, 2008.
[17] T. Bollhorst et al., 'Bifunctional submicron colloidosomes coassembled from fluorescent and superparamagnetic nanoparticles,' Angewandte Chemie, vol. 127, no. 1, pp. 120-125, 2015.
[18] M. Xiao et al., 'Bioinspired bright noniridescent photonic melanin supraballs,' Science advances, vol. 3, no. 9, p. e1701151, 2017.
[19] G. C. Phan‐Quang, H. K. Lee, I. Y. Phang, and X. Y. Ling, 'Plasmonic colloidosomes as three‐dimensional SERS platforms with enhanced surface area for multiphase sub‐microliter toxin sensing,' Angewandte Chemie International Edition, vol. 54, no. 33, pp. 9691-9695, 2015.
[20] S. Li, B. A. Moosa, J. G. Croissant, and N. M. Khashab, 'Electrostatic Assembly/Disassembly of Nanoscaled Colloidosomes for Light‐Triggered Cargo Release,' Angewandte Chemie, vol. 127, no. 23, pp. 6908-6912, 2015.
[21] L. Shang, Y. Cheng, and Y. Zhao, 'Emerging droplet microfluidics,' Chemical reviews, vol. 117, no. 12, pp. 7964-8040, 2017.
[22] R. Mead-Hunter, A. J. King, and B. J. Mullins, 'Plateau Rayleigh instability simulation,' Langmuir, vol. 28, no. 17, pp. 6731-6735, 2012.
[23] A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, 'Chaotic mixer for microchannels,' Science, vol. 295, no. 5555, pp. 647-651, 2002.
[24] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, 'Droplet microfluidics,' Lab on a Chip, vol. 8, no. 2, pp. 198-220, 2008.
[25] J. Atencia and D. J. Beebe, 'Controlled microfluidic interfaces,' Nature, vol. 437, no. 7059, p. 648, 2004.
[26] S. L. Anna, N. Bontoux, and H. A. Stone, 'Formation of dispersions using “flow focusing” in microchannels,' Applied physics letters, vol. 82, no. 3, pp. 364-366, 2003.
[27] C. Li, K. L. Shuford, M. Chen, E. J. Lee, and S. O. Cho, 'A facile polyol route to uniform gold octahedra with tailorable size and their optical properties,' ACS nano, vol. 2, no. 9, pp. 1760-1769, 2008.
[28] P. J. Chung, L. M. Lyu, and M. H. Huang, 'Seed‐Mediated and Iodide‐Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures,' Chemistry–A European Journal, vol. 17, no. 35, pp. 9746-9752, 2011.
[29] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. J. L. o. a. C. Lee, 'Droplet microfluidics,' vol. 8, no. 2, pp. 198-220, 2008.
[30] J. Atencia and D. J. J. N. Beebe, 'Controlled microfluidic interfaces,' vol. 437, no. 7059, p. 648, 2004.
[31] C.-C. Chang, H.-L. Wu, C.-H. Kuo, and M. H. Huang, 'Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures,' Chemistry of Materials, vol. 20, no. 24, pp. 7570-7574, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21385-
dc.description.abstract我們開發了一微流體微溶二相乳化平台,利用微流體機制和特性探討油包水之colloidosome的生成機制和增加其均勻度,在油包水或水包油產生液滴,其中液滴內有奈米粒子,粒子為了降低表面能在界面中自組裝形成一空心囊體,我們稱之為colloidosome,與液珠微流體的產生方法相似,且有別於傳統使用油水不互溶的方式,本研究為第一次使用微溶二相液體於微流體系統中進行液珠生成,用來研究這種微溶二相的生成機制和創造出單一分散且尺寸分布均勻的colloidosome在長時間流體穩定流動,自組裝的情形在擴散和溶解時同時發生,使整個colloidosome的自組裝更加穩定,且在層流和穩定流動的情況底下,不受其他機械力的干擾,使用八面體的金奈米粒子也能有很好的組裝排列。透過改變濃度 (100 ×,350 ×)、改變奈米粒子形狀(八面體、截角八面體、有序十二面體),改變奈米粒子的表面電荷 (表面coating poly(diallyldimethylammonium) chloride、cetyltrimethylammonium chloride、poly(sodium 4-styrenesulfonate)) 來觀察colloidosome組裝結果。我們從得到的結果可以看到濃度越高時,colloidosome越大,反之則越小。在我們這個平台之中,八面體和截角八面體都有很好的組裝表現,形成有序地自組裝結構。我們改變了表面電荷,可以看到使用PDDA之組裝 表現最佳,而PSS則會呈現完全不組裝,侷限在一液珠之中,CTAC則會聚集在一起形成一實心球,顯示出除了粒子為了降低表面能而貼附在表面外,表面電性也會影響整個組裝過程。最後我們得到之colloidosome,因其自組裝結構而有相當特殊之光學性質,具有非常強烈的吸收性質,甚至可以吸收99%之光。希望未來能夠於生醫領域上依靠其特殊之光學性質做出其他應用。zh_TW
dc.description.abstractIn this study, we developed a microfluidic slightly miscible two-phase emulsification platform to investigate the formation mechanism of water in oil colloidosome. The process is similar to making microfluidic droplets with flow focusing design except using slightly miscible two-phase fluids rather than the oil-water immiscible template for nanoparticle self-assembly. We change concentration (100× and 350×), shape of gold nanoparticle (cuboctahedron, octahedron and truncated octahedron) and surface electrostatic adsorption of poly diallyldimethylammonium chloride (PDDA), cetyltrimethylammonium chloride (CTAC) or poly sodium 4-styrenesulfonate (PSS) in the central water phase solution. The results show that the higher concentration can form a larger colloidosome. In addition, both octahedron and truncated octahedron have good assembly performance. Positively charged PDDA has good assembly rigidity but CTAC and PSS coated AuNPs can't be assembled by this method. The obtained colloidosome possesses unique optical property. It can even absorb 99% of the incident light ranging from 300 nm to 1100 nm. We expect the collidosomes we created can be used in the field of biomedicine and bioimaging due to its special structure and optical properties.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:32:38Z (GMT). No. of bitstreams: 1
ntu-108-R06543062-1.pdf: 2432055 bytes, checksum: de54315fca6e797724efcc709b945b35 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
第一章:前言與文獻回顧 1
1.1 Colloidosome 1
1.2 Colloidosome之生成機制 1
1.3 金屬colloidosome之應用與目前之問題 2
1.4 Pickering emulsion 2
1.5 金屬colloidosome之生成 3
1.6 使用微流體設置生成colloidosme 4
1.7 帶有靜電組裝設計之colloidosme 5
1.8 液珠微流體 6
1.8.1T-juction 6
1.8.2Flow-focusing 7
1.8.3Co-flow focusing 8
1.9微流體混沌混合器 9
1.10 本研究提出之平台 10
1.11金奈米粒子之選用 11
1.11.1 金奈米粒子之選用 (八面體) 11
1.11.2金奈米粒子選用 (多種形狀) 12
第二章:實驗設計與流程 14
2.1 實驗材料 14
2.1.1 實驗試劑與耗材 14
2.1.2實驗儀器 14
2.2 材料之合成 15
2.2.1金奈米 (八面體)之合成 [27] 15
2.2.2 金奈米 (菱面體) 之合成 [28] 15
2.3金奈米之純化 16
2.4金奈米之表面塗布 16
2.4.1 PDDA 16
2.4.2 PSS 16
2.5微流體晶片製作 16
2.5.1油包奈米金黑體晶片製作 16
2.5.2油包奈米金黑體上層晶片製作 17
2.5.3油包奈米金黑體下層晶片製作 17
2.5.4油包奈米金黑體上層晶片製作(微混合器) 17
2.6Self-assembly Colloidosome in microchannel 17
第三章 實驗結果與討論 19
3.1 微流體體積流率測試 19
3.2 奈米金濃度測試 20
3.2 奈米金形狀測試 22
3.3奈米金之表面電性之改變 24
3.4流道形狀之改變 26
3.5探討自組裝之光學性質 27
第四章 結論與展望 29
參考文獻 30
dc.language.isozh-TW
dc.title液滴微流體應用於二相微溶金奈米粒子自組裝zh_TW
dc.titleDroplet Microfluidics for Two-Phase Slightly Miscible Gold Nanoparticle Self-Assemblyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周逸儒(Yi-Ju Chou),陳志鴻(Chih-Hung Chen)
dc.subject.keyword微流體,微溶,乳化,金奈米,colloidosome,zh_TW
dc.subject.keywordmicrofluidic,slightly miscible,colloidosome,AuNPs,emulsification,en
dc.relation.page32
dc.identifier.doi10.6342/NTU201902645
dc.rights.note未授權
dc.date.accepted2019-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved