請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21361完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃振康(Chen-Kang Huang) | |
| dc.contributor.author | Jun-Fu Huang | en |
| dc.contributor.author | 黃俊福 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:32:02Z | - |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-11 | |
| dc.identifier.citation | Aftab, S., et al. 2018. Rainfall Prediction in Lahore City using Data Mining Techniques.
Bishop, C. M. 2006. Pattern recognition and machine learning,springer. Breiman, L. 1996. 'Bagging predictors.' Machine Learning24(2):123-140. Chao, Z., et al. 2018. 'Research on Real-Time Local Rainfall Prediction Based on MEMS Sensors.' Journal of Sensors2018:9. Cortes, C. and V. Vapnik 1995. 'Support-vector networks.' Machine Learning20(3):273-297. Cover, T. M. and P. E. Hart 1967. 'Nearest neighbor pattern classification.' IEEE transactions on information theory13(1):21-27. Gangopadhyay, S. and M. K. Mondal 2016. A wireless framework for environmental monitoring and instant response alert.2016 International Conference on Microelectronics, Computing and Communications (MicroCom). Geetha, A. and G. M. Nasira 2014. Data mining for meteorological applications: Decision trees for modeling rainfall prediction.2014 IEEE International Conference on Computational Intelligence and Computing Research. Han, J., et al. 2011. Data Mining Concepts and Techniques, 3rd Edition.S.l.,Morgan Kaufmann,. Hand, D. J. 2006. 'Data Mining.' Encyclopedia of Environmetrics2. Matthews, B. W. 1975. 'Comparison of the predicted and observed secondary structure of T4 phage lysozyme.' Biochimica et Biophysica Acta (BBA)-Protein Structure405(2):442-451. Pattar, S., et al. 2018. 'Searching for the IoT Resources: Fundamentals, Requirements, Comprehensive Review, and Future Directions.' IEEE Communications Surveys & Tutorials20(3):2101-2132. Sethi, P. and S. R. Sarangi 2017. 'Internet of Things: Architectures, Protocols, and Applications.' Journal of Electrical and Computer Engineering. Shabib Aftab, M. A., Noureen Hameed, Muhammad Salman Bashir, Iftikhar Ali, Zahid Nawaz 2018. 'Rainfall Prediction using Data Mining Techniques: A Systematic Literature Review.' (IJACSA) International Journal of Advanced Computer Science and Applications9:5. Tenzin, S., et al. 2017. Low cost weather station for climate-smart agriculture.2017 9th International Conference on Knowledge and Smart Technology (KST). Yu, P.-S., et al. 2017. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. Zainudin, S., et al. 2016. 'Comparative analysis of data mining techniques for Malaysian rainfall prediction.' International Journal on Advanced Science, Engineering and Information Technology6(6):1148-1153. Mekki, M., et al. 2015. Greenhouse monitoring and control system based on wireless Sensor Network.2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE). Safavian, S. R. and D. Landgrebe 1991. 'A survey of decision tree classifier methodology.' IEEE transactions on systems, man, and cybernetics21(3):660-674. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21361 | - |
| dc.description.abstract | 一些農作物,如:玉米、柿子或藥材,傳統上藉由陽光曝曬降低含水率以延長儲存時間,此時,若發生突發性的降雨將會導致農作物受損,造成經濟上的損失。降雨亦可能影響某些果樹花朵的授粉成功率,影響後續的收成。因此,更加精準的降雨預測將有助於改善作物的產量與品質。
本研究開發的小型氣象盒子可蒐集溫度、濕度、大氣壓力、光照度與雨滴感測等環境資訊,具有資料儲存與傳送降雨即時提醒功能。系統設置於台灣大學與桃園市,進行資料收集與耐久性測試。 建立降雨預測模型的歷史數據有三種來源,分別為:1. 台大與桃園市兩處氣象盒子的持續蒐集 2. 宜蘭大學於上將梨果園設置的監測系統以及 3. 中央氣象局公開的歷史數據。針對歷史資料使用了資料探勘技術,監督式學習二元分類方法,用以建立目前氣象狀態與特定時間後降雨情形的關係。使用Decision Tree、Bagged Tree、KNN、SVM四種演算法,與10-fold cross validation的驗證方法。結果顯示,氣象盒子的資料由KNN建立的模型預測效果最佳,氣象局資料則為Bagged Tree之效果最佳。 | zh_TW |
| dc.description.abstract | Rainfall is important for food production plan, water resource management and all activity plans in the nature. The occurrence of prolonged dry period or heavy rain at the critical stages of the crop growth and development may lead to significant reduce crop. For tea farmers and fruit farmers, under proper soil conditions and management. The quality and yield of crops are more affected by temperature and precipitation.
It can be very helpful to reduce the effects of sudden and extreme rainfall by taking effective security measures in advance. Therefore, Rainfall prediction is very important for farmers. This research has developed a small weather box that collects environmental information such as temperature, humidity, atmospheric pressure, illuminance and raindrop. The purpose is to monitor the agricultural environment and collect environmental information from local areas. The study set up the weather box in National Taiwan University (NTU), Taoyuan city, Yilan city as experimental fields. The analysis of the experiment was carried out in two ways: 1. Weather box 2. Central Weather Bureau (CWB). The dataset was obtained from Central Weather Bureau (CWB) and consists of several atmospheric attributes, and data mining techniques was used. Data mining techniques can effectively predict the rainfall by extracting the hidden patterns among available features of past weather data. This research performed rainfall prediction in Taipei city using five classifier : Support Vector Machine, K Nearest Neighbor, Decision Tree and Bagged Tree. According to results, the prediction model performed well for no-rain class however for rain class wasn’t well. The results show that the model of the weather box is the best for KNN, and the data of the weather bureau is the best for the Bagged Tree. The CWB trained model predicted the rainfall accuracy was generally poor, the improvement is made by adjusting the sample proportion. The experimental results show that KNN and SVM have the most performance improvement under the equilibrium ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:32:02Z (GMT). No. of bitstreams: 1 ntu-108-R06631042-1.pdf: 3973035 bytes, checksum: 728c370b1c13c7262af8fa622a73f0c9 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 前言 1 1-1背景 1 1-2研究目的 3 第二章 文獻探討 5 2-1物聯網(Internet of Thing, IoT) 5 2-1-1 低成本氣象站 7 2-2機器學習 8 2-2-1決策樹(Decision Tree) 9 2-2-2支持向量機(Support Vector Machine, SVM) 11 2-2-3 k-最近鄰(k Nearest Neighbors, kNN ) 13 2-2-4 Bagged Tree 15 2-3 資料探勘於降雨預測 16 2-4 資料探勘流程 19 2-4-1資料前處理 20 2-4-2資料清理 20 2-4-3資料整合 21 2-4-4資料降維 21 2-4-5資料特徵縮放 22 2-4-6資料驗證 23 2-4-7分類數據不均衡問題 24 2-4-8驗證效能 25 2-4-9 Confusion Matrix 25 第三章 實驗設備與方法 29 3-1小型氣象站(氣象盒子) 29 3-1-1開發板 29 3-1-2感測器模組 30 3-1-3雨量計設計 32 3-1-4軟體設置 33 3-1-4-1 ThingSpeak 36 3-1-4-2 IFTTT與LINE通知 37 3-1-5硬體與實驗設置 38 3-1-5-1台北場域 38 3-1-5-2桃園場域 40 3-1-5-3宜蘭場域 41 3-2 資料處理流程 41 3-2-1資料獲取 41 3-2-2資料前處理 43 3-2-3資料清理 43 3-2-4資料特徵縮放 45 3-2-5資料降維 46 3-2-6交叉驗證 46 3-2-7驗證效能 47 3-3 MATLAB軟體 48 第四章 結果與討論 49 4-1氣象盒子性能 49 4-2雨量計測試 50 4-2-1雨量計測試結果 51 4-3氣象盒子預測模型 54 4-3-1台北 54 4-3-2桃園 58 4-4宜蘭上將梨 61 4-5氣象局預測模型 62 4-6樣本類別調整 68 4-7氣象盒子與氣象局共同預測 80 4-8氣象盒子與氣象局比較 82 第五章 結論與建議 84 參考文獻 86 | |
| dc.language.iso | zh-TW | |
| dc.title | 小型氣象盒子結合資料探勘方法應用於短期降雨預測 | zh_TW |
| dc.title | A Compact Weather Box Empowered with Data Mining
Methods for Short-Term Rainfall Prediction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 方 煒(Wei Fang),陳世芳(Shih-Fang Chen) | |
| dc.subject.keyword | 氣象盒子,降雨預測,資料探勘,二元分類法, | zh_TW |
| dc.subject.keyword | Weather box,Rainfall prediction,Data mining,Binary classification,Decision Tree,Bagged Tree,KNN,SVM, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU201902800 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
