Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21350
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖(Hsi-Sheng Goan)
dc.contributor.authorChi-An Linen
dc.contributor.author林奇恩zh_TW
dc.date.accessioned2021-06-08T03:31:46Z-
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation[1] P. Krantz, “Investigation of transmon qubit designs -a study of plasma frequency predictability,” Thesis for the degree Master of Science in Nanoscale Science and Technology.
[2] A. Blais, R.-S. Huang, A. Wallra↵, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Phys. Rev. A, vol. 69, p. 062320, Jun 2004. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.69.062320
[3] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, “Extending the lifetime of a quantum bit with error correction in superconducting circuits,” Nature, vol. 536, 07 2016.
[4] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L.-M. Duan, and L. Sun, “Quantum error correction and universal gate set operation on a binomial bosonic logical qubit,” Nature Physics, vol. 15, no. 5,
pp. 503–508, 2019. [Online]. Available: https://doi.org/10.1038/s41567-018-0414-3
[5] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, “Implementing a universal gate set on a logical qubit encoded in an oscillator,” Nature Communications, vol. 8, no. 1, p. 94, 2017. [Online]. Available:
https://doi.org/10.1038/s41467-017-00045-1
[6] Y. Makhlin, G. Sch¨on, and A. Shnirman, “Quantum-state engineering with josephsonjunction devices,” Rev. Mod. Phys., vol. 73, pp. 357–400, May 2001. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.73.357
[7] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature, vol. 453, p. 1031
EP, 06 2008. [Online]. Available: https://doi.org/10.1038/nature07128
[8] A. W. J. M. M. M. H. Devoret, “Superconducting qubits: A short review.” arxiv:cond-mat, 2005.
[9] S.-Y. Huang and H.-S. Goan, “Optimal control for fast and high-fidelity quantum gates in coupled superconducting flux qubits,” Physical Review A, vol. 90, no. 1, Jul 2014. [Online]. Available: http://dx.doi.org/10.1103/PhysRevA.90.012318
[10] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D.
O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, “Generation of fock states ina superconducting quantum circuit,” Nature, vol. 454, pp. 310 EP–, 07 2008. [Online]. Available: https://doi.org/10.1038/nature07136
[11] S. Bravyi, M. Englbrecht, R. K¨onig, and N. Peard, “Correcting coherent errors with surface codes,” npj Quantum Information, vol. 4, no. 1, p. 55, 2018. [Online]. Available: https://doi.org/10.1038/s41534-018-0106-y
[12] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H. Devoret, and M. Mirrahimi, “Hardware-efficient autonomous quantum memory protection,” Phys. Rev. Lett., vol. 111, p. 120501, Sep 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.111.120501
[13] A. B. A. K. S. A. S. M. H. M. L. R. S. M. S.Touzard Z.Leghtas, I.M. Pop and M. Devoret, “Confining the state of light to a quantum manifold by engineered two-photon loss,” Science, vol. 347, no. 6224, pp. 853–853, 2015.
[14] T. Caneva, T. Calarco, and S. Montangero, “Chopped random-basis quantum optimization,” Phys. Rev. A, vol. 84, p. 022326, Aug 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.84.022326
[15] I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A, vol. 52, pp. 3489–3496, Nov 1995. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.52.3489
[16] A. Galindo and M. A. Mart´ın-Delgado, “Information and computation: Classical and quantum aspects,” Rev. Mod. Phys., vol. 74, pp. 347–423, May 2002. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74.347
[17] A. M. Childs and W. van Dam, “Quantum algorithms for algebraic problems,” Rev. Mod. Phys., vol. 82, pp. 1–52, Jan 2010. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.82.1
[18] S. C. Coutinho, “Quantum computing for computer scientists noson s. yanofsky and mirco a. mannucci, cambridge university press, 2008,” SIGACT News, vol. 40, no. 4, pp. 14–17, Jan. 2010. [Online]. Available: http://doi.acm.org/10.1145/1711475.1711479
[19] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Sch¨on, “Decoherence in a superconducting quantum bit circuit,” Phys. Rev. B, vol. 72, p. 134519, Oct 2005. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.72.134519
[20] L.-M. Duan and G.-C. Guo, “Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment,” Phys. Rev. A, vol. 57, pp. 737–741, Feb 1998. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.57.737
[21] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A, vol. 52, pp. R2493–R2496, Oct 1995. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
[22] A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett., vol. 77, pp. 793–797, Jul 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.77.793
[23] L. R. Feynman, R.P. and M. Sands, THE FEYNMAN LECTURES ON PHYSICS, Vol III, Quantum Mechanics. Addison-Wesley Publishing Company, Inc., 1965.
[24] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, “Quantum coherence with a single cooper pair,” Physica Scripta, vol. T76, no. 1, p. 165, 1998. [Online].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21350-
dc.description.abstract在量子電腦中,量子錯誤修正 (Quantum Error Correction) 用來保護量子資訊免於受去相干化 (Decoherence) 及其他雜訊的錯誤,因此,其已是未來大型的量子電腦中不可或缺的一環。為了實現量子錯誤修正,我們會使用具有對稱性質的量子態 (Quantum State) 將量子位元 (Qubit)) 冗餘地編碼 (Encode) 在更高維度空間中。透過投影量測 (Projective Measurement)所得的奇偶性類型 (Parity-Type) 可觀測量 (Observable) 提供了錯誤更正碼 (Error Syndrome) 的資訊,通過簡單的操作可以糾正錯誤。
在本論文裡,我們將會探討許多種加密的方法,第一種方法是將超導量子位元上的資訊加密成二分量cat codes (coherent state的疊加態)的形式,第二種方法是加密成四分量cat codes,第三種方法則是加密於binomial bosonic logical basis,接著,我們會比較此三種方法的優缺點,並且說明我們為何選擇第三種方法。
將量子位元編碼為振盪器的同調態 (Coherent State) 的疊加(Superposition),在單腔模式 (Single Cavity Mode) 下的編碼以及保護的機制可顯著降低由於光子損失引起的錯誤。我們首先回顧一些基礎的量子超導電路 (Superconducting Quantum Circuit) 並且介紹量子計算元件 (Quantum Qubit Device) 和我們所用的物理系統。接著,我們將引入CRAB最佳化控制方法 (Optimization Method ) 來解決最佳化控制的問題。最後,我們將藉由找到最佳化的控制脈衝,以實行加密/解密邏輯閘、以及在加密空間 (encoded space)下的X gate。
zh_TW
dc.description.abstractQuantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other noise sources and is therefore an essential component of a future large-scale quantum computer. To implement QEC, a quantum bit (qubit) is redundantly encoded in a higher-dimensional space using quantum states with symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations.
In this thesis, we study several methods for encoding. First method is encoding a superconducting qubit state information in a superposition of coherent states of an oscillator with two-component cat codes, second method is encoding in four-component cat codes, and third method is encoding in a binomial bosonic logical basis. Then we will compare the pros and cons of the methods and explain why we choose the third method (binomial bosonical logical basis).
The encoding in a single cavity mode, together with a protection protocol, significantly reduces the error rate due to photon loss. We first review some basic elements of superconducting quantum circuit and introduce the qubit devices and the physical system we use. Then we will build up the encoding/decoding gate in matrix from, and explain the benefit of the cat-code we choose.
We then introduce the CRAB algorithm (based on Nelder-Mead optimization method) for solving optimal control problems. Finally we implement the encoding/decoding gate and X gate operating in encoded space by finding out the optimal control pulse.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:31:46Z (GMT). No. of bitstreams: 1
ntu-108-R06222043-1.pdf: 3934435 bytes, checksum: bf3a5368f77ce84310342249ce2b5fe3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝. . . . . . . . . . . . . . . . . . . . . . . . . I
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . II
Abstract. . . . . . . . . . . . . . . . . . . . . . . . IV
List of Figures. . . . . . . . . . . . . . . . . . . . . . VI
1 Introduction . . . . . . . . . . . . . . . . .. . . . . 1
1.1 Introduciton . . . . . . . . . . . . . . .. . . . . 1
1.2 A Brief Synopsis of each chapter . .. . . . . . . . . . . . 3
2 Superconducting Qubit . . . . . . . . . . . . . . . . . . .5
2.1 Quantum Computer ... . . . . . . . . . . . . . . . . 5
2.1.1 Quantum bits versus classical bits ... . . . . . . . . . 6
2.1.2 Why bother with Quantum Computer?.. . . . . . . . . 8
2.1.3 The Problems of Quantum Computer and Quantum
Error Correction.. . . . . . . . . . . . . . . . . . . 9
2.2 Josephson Junction. . . . . . . . . . . . . . . . . . .10
2.2.1 Quantum LC circuit. . . . . . . . . . . . . . . . 10
2.2.2 Josephson Effect . . . . . . . . . . . . . . . . .12
2.3 From the Cooper-Pair Box to the Transmon Qubit . . .15
2.3.1 The Single Cooper-pair box (SCB).. . . . . . . . . . . 15
2.3.2 The Transmon Qubit. . . . . . . . . . . . . . . 16
3 Cavity Quantum Electrodynamics. . . . . . . . . . . . . 20
3.1 Jaynes-Cummings Model . . . . . . . . . . . . . . . . 20
3.2 Effects of the coupling : resonant and dispersive limits. 22
4 Build Up the Logical Basis . . . . . . . . . . . . . . . . .24
4.1 Coherent state . . . . . . . . . . . . . .. . . . . . . 24
4.1.1 Matrix Representation of the Harmonic Oscillator .. 25
4.1.2 Definition and Properties of Coherent States. .. . . 26
4.1.3 Expansion of coherent state in Fock space…. . . .. .27
4.2 Quantum error correction on cat-codes. . . . . . .. 29
4.2.1 Cyclic photon-loss. . . . . . . . . .. . . . . . . 29
4.2.2 Binomial Bosonic Logical Basis . . . . . . . . . . 31
5 Optimal Control for Logical Gates. . . . . . . . . . . . . . ..35
5.1 The Model . . . . . . . . . . . . . . . . . . . 35
5.1.1 The Setup of the Model . . . . . . . . . . . . . 35
5.1.2 Hamiltonian Parameters . . . . . . . . . . . . . ..36
5.2 Build Up the logical Gate . . . . . . . . . . . . . . . 37
5.2.1 Encoding Gate. . . . . . . . . . . . . . . . 37
5.2.2 X Gates in Encoding Space. . . . . . . . . . . . 40
5.3 Optimal Control Pulse . . . . . . . . . . . . . . . . 43
5.3.1 Chopped random-basis (CRAB) quantum optimization
. . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Numerical Results. . . . . . . . . . . . . . . . 44
5.3.3 Discussion . . . . . . . . . . . . . . … . . . 47
6 Conclusion . . . . . . . . . . . . . . . . . . . . . ..48
References 50
dc.language.isoen
dc.title除錯加密邏輯閘在超導量子位元系統中的最佳化控制zh_TW
dc.titleOptimal Control of Encoding Gate for Error Correction
in Superconducting Qubit System
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳岳男,蘇正耀
dc.subject.keyword超導體量子位元,量子邏輯閘,除錯加密邏輯閘,量子最佳化控制,量子錯誤修正,zh_TW
dc.subject.keywordsuperconducting qubit,quantum gate,circuit cavity QED,quantum optimal control,quantum error correction,cat codes,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201902940
dc.rights.note未授權
dc.date.accepted2019-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved