Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王藹農(Ai-Nung Wang)
dc.contributor.authorYi-Ping Huangen
dc.contributor.author黃毅平zh_TW
dc.date.accessioned2021-06-08T03:31:16Z-
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373–1396, 2003.
[2] X. He and P. Niyogi. Locality preserving projections. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 153–160. MIT Press, 2004.
[3] E. Kokiopoulou and Y. Saad. Orthogonal neighborhood preserving projections. In Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM ’05, pages 234–241, Washington, DC, USA, 2005. IEEE Computer Society.
[4] E. Kokiopoulou and Y. Saad. Orthogonal neighborhood preserving projections: A projection­based dimensionality reduction technique. IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2143–2156, Dec. 2007.
[5] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326, 2000.
[6] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21330-
dc.description.abstract流形學習是降低資料維度的方法,可分為線性以及非線性的。非線性的方法有 Laplacian eigenmaps 和 locally linear embeddings 等。線性的方法有 MDS、ISOMAP、LPP 以及他們的衍生。這些方法的解可由跡數最小化問題得來,並等價於特徵值問題。我們給一個通用的架構並討論他們之間的關係。zh_TW
dc.description.abstractManifold learning algorithms are techniques utilized to reduce the dimen­ sion of data sets. These methods includes the nonlinear (implicit) ones, and the linear (projective) ones. Among the nonlinear are Laplacian eigenmaps and locally linear embeddings (LLE); and among the linear are metric multi­ dimensional scaling (MDS), ISOMAP, locally preserving projections (LPP) and derivatives of them. All these methods give rise to trace minimization problems and, as a result, eigenvalue problems. We give a common frame­ work for them and discuss their relationships.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:31:16Z (GMT). No. of bitstreams: 1
ntu-108-R03221024-1.pdf: 3006596 bytes, checksum: 5a60c79d0ab720e381b97fa99e7515db (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
Acknowledgements vii
摘要 ix
Abstract xi
1 Preliminaries 1
1.1 Covariance 1
1.2 Frobenius Norm of a Matrix 3
1.3 Principle Components 5
1.4 Optimal Properties of PCA 8
1.4.1 PCA as Minimizing the Square Distances 11
2 Problem Statement, Conventions and the Relevant 13
2.1 Problem Statement 13
2.2 Data Matrix 14
2.3 Gramian Matrix 14
2.4 The Trace Minimizing Problems 16
2.5 Graph Construction 17
3 Classical Linear Methods 19
3.1 PCA, Reinterpreted 19
3.2 Multidimensional Scaling 20
3.2.1 Distance Matrix 20
3.2.2 Gramian matrix 21
3.2.3 Embedding 23
3.3 ISOMAP 25
4 Graph­Based Nonlinear Methods 27
4.1 Laplacian Eigenmaps 27
4.1.1 Objective Function 28
4.1.2 Embeddings 29
4.2 Locally Linear Embedding 29
4.2.1 Reconstruction of a Single Point 30
4.2.2 Weight Matrix 32
4.2.3 Finding Weight 32
4.2.4 Find the Embedding 33
4.3 Connection between Laplacian Eigenmaps and LLE 34
5 Graph­Based Methods with Linear Assumptions 37
5.1 Locally Preserving Projections 37
5.2 Orthogonal Locality Preserving Projections 38
5.3 Neighborhood Preserving Projection 38
5.4 Orthogonal Neighborhood Preserving Projection 39
6 The Unifying Framework 41
Bibliography 43
dc.language.isoen
dc.title流形學習回顧zh_TW
dc.titleA Review of Manifold Learning Algorithmsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁惠禎(Fei-tsen Liang),謝春忠(Chun-Chung Hsieh)
dc.subject.keyword流形學習,zh_TW
dc.subject.keywordManifold Learning,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201903104
dc.rights.note未授權
dc.date.accepted2019-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved