Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21306
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃振康(Chen-Kang Huang)
dc.contributor.authorWen-An Chenen
dc.contributor.author陳文安zh_TW
dc.date.accessioned2021-06-08T03:30:43Z-
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationReferences
A Boles, M. and Y. Cengel. 2006. Thermodynamics: An Engineering Approach. 6th ed. New York: McGraw-Hill.
Carey, V. P. 2008. Liquid vapor phase change phenomena : an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. 2nd ed. Boca Raton: CRC Press, Taylor & Francis Group.
Das, S., B. Saha and S. Bhaumik. 2017. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Applied Thermal Engineering 113: 1345-1357.
Das, S., B. Saha and S. Bhaumik. 2017. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Experimental Thermal and Fluid Science 81: 454-465.
Hsu, Y. Y. 1962. On the Size Range of Active Nucleation Cavities on a Heating Surface. Journal of Heat Transfer 84(3): 207-213.
Incropera, F., D. P. DeWitt, T. L. Bergman and A. S. Lavine. 2007. Fundamentals of Heat and Mass Transfer. 6th ed. Chichester, United Kingdom: John Wiley & Sons Ltd.
Jun, S., H. Wi, A. Gurung, M. Amaya and S. M. You. 2016. Pool Boiling Heat Transfer Enhancement of Water Using Brazed Copper Microporous Coatings. Journal of Heat Transfer 138(7): 071502-071502-071509.
Kim, D. E., D. I. Yu, D. W. Jerng, M. H. Kim and H. S. Ahn. 2015. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Experimental Thermal and Fluid Science 66: 173-196.
Kim, S. J., I. C. Bang, J. Buongiorno and L. W. Hu. 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. International Journal of Heat and Mass Transfer 50(19): 4105-4116.
Kong, X., Y. Zhang and J. Wei. 2018. Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure. Experimental Thermal and Fluid Science 91: 9-19.
Kousalya, A. S., J. A. Weibel, S. V. Garimella and T. S. Fisher. 2013. Metal functionalization of carbon nanotubes for enhanced sintered powder wicks. International Journal of Heat and Mass Transfer 59: 372-383.
Kumar G, U., S. S, T. M.R and D. Babu P. 2017. Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72. Applied Surface Science 423: 509-520.
Liang, G. and I. Mudawar. 2018. Review of pool boiling enhancement with additives and nanofluids. International Journal of Heat and Mass Transfer 124: 423-453.
Liang, G. and I. Mudawar. 2019. Review of pool boiling enhancement by surface modification. International Journal of Heat and Mass Transfer 128: 892-933.
Mori, S. and Y. Utaka. 2017. Critical heat flux enhancement by surface modification in a saturated pool boiling: A review. International Journal of Heat and Mass Transfer 108: 2534-2557.
Rahman, M. M., E. Ölçeroğlu and M. McCarthy. 2014. Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces. Langmuir 30(37): 11225-11234.
Ujereh, S., T. Fisher and I. Mudawar. 2007. Effects of carbon nanotube arrays on nucleate pool boiling. International Journal of Heat and Mass Transfer 50(19): 4023-4038.
Yu, C. K. and D. C. Lu. 2007. Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72. International Journal of Heat and Mass Transfer 50(17): 3624-3637.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21306-
dc.description.abstract沸騰熱傳具備極佳的傳熱能力先前相關文獻指出加熱表面之表面處理有助於在沸騰熱傳表現上之提升。本研究建立了一套池沸騰實驗設備,使用板狀試片以便拍攝 SEM 照片觀察經表面處理後之加熱表面,親水性可由量測接觸角來觀察。本研究之表面處理方式包含 銅基材熱壓 銅網、氧化鎢奈米線於銅基材銅網、鈦薄片、燒結鈦粉於鈦薄片、二氧化鈦奈米管於鈦薄片及二氧化鈦奈米管於燒結鈦粉於鈦薄片之應用。沸騰實驗以不同加熱棒之輸入電壓為參數,由40、45、50至55 ACV,經由SolidWorks Flow Simulation 模擬後,計算而得之加熱表面之過熱度及熱通量,可將其繪製成沸騰曲線圖作後續沸騰熱傳表現之分析。結果顯示銅網之應用提升沸騰熱傳係數43.5%。而相較於銅基材熱壓銅網,氧化鎢奈米線之應用 有效降低初始過熱度約2.8 oC。相較於鈦薄片燒結鈦粉之應用提升沸騰熱傳係數95.5%二氧化鈦奈米管之應用降低初始過熱度約1.8 oC,提升沸騰熱傳係數125.5%同時應用二氧化鈦奈米管及燒結鈦粉則降低初始過熱度達5.4 oC,提升沸騰熱傳係數66.2%。然而,目前使用之奈米結構耐用度低,實驗結果不具重複性而隨實驗次數逐漸衰退。本實驗裝置具良好穩定性,因此提供了一實驗平臺供未來表面處理之研究所用。zh_TW
dc.description.abstractBoiling heat transfer exhibits great ability to transport energy. Researches have shown the surface modifications is able to enhance the boiling heat transfer performance. In this study, a pool boiling apparatus was established. A Plate sample was used and therefore the surface modification can be observed by taking the SEM image, and the wettability can be observed by measuring the contact angle. Copper substrate with copper mesh, WO3 nanowires on copper substrate with copper mesh, Ti foil, Ti foil with sintered Ti, and TiO2 nanotubes on Ti foil with sintered Ti or without sintered Ti coating were the modifications to be investigated. Pool boiling experiments were performed by adjusting the input voltage which were 40, 45, 50, and 55 ACV to the cartridge heaters, the superheat and heat flux of heating surface can be calculated with help from SolidWorks Flow Simulation, then the boiling curves were plotted to analyze the boiling heat transfer performances.
The results of boiling curves showed that the application of copper mesh increased the boiling heat transfer coefficient by 43.5%. The application of WO3 nanowires reduced the incipient superheat by 2.8 oC comparing to the copper substrate with copper mesh. Comparing to the Ti foil, the application of sintered Ti coating increased the boiling heat transfer coefficient by 95.5%, the application of TiO2 nanotubes reduced the incipient superheat by 1.8 oC and increased heat transfer coefficient by 125.5%. The combined application of TiO2 nanotubes and sintered Ti coating significantly reduced the incipient superheat by 5.4 oC and increased heat transfer coefficient by 66.2% comparing to the Ti foil. The current nanostructures were not durable enough to have consistent results. The pool boiling apparatus was solid, it provided a platform to discover future surface treatments.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:43Z (GMT). No. of bitstreams: 1
ntu-108-R06631044-1.pdf: 3060885 bytes, checksum: 6c6012535f0284fd3f85feabf55dc1c0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTable of contents
誌謝 i
摘要 ii
Abstract iii
Table of contents v
Figures vii
Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Purpose 5
1.3 Structure of Thesis 11
Chapter 2 Literature Survey 13
2.1 Microscale Technique 15
2.2 Nanoscale Technique 17
2.3 Hybrid-scale Technique 25
Chapter 3 Experimental Methods 29
3.1 Experimental Materials 29
3.2 Simulations of Lateral Heat Transfer 35
Chapter 4 Results and Discussion 39
4.1 The effects of copper mesh 39
4.2 The effects of WO3 nanowires 43
4.3 The effects of Ti foil 47
4.4 The effects of sintered Ti 51
4.5 The effects of TiO2 nanotubes 59
4.6 Incipient superheat 65
4.7 Active nucleation cavity 69
4.8 Wettability 79
4.9 Boiling heat transfer coefficient 83
Chapter 5 Conclusions and suggestions 87
5.1 Conclusions 87
5.2 Suggestions 89
References 91
dc.language.isoen
dc.title氧化鎢奈米線及二氧化鈦奈米管於沸騰熱傳之影響zh_TW
dc.titleEffects of WO3 nanowires and TiO2 nanotubes on boiling heat transferen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇程裕(Cherng-Yuh Su),廖川傑(Chuan-Chieh Liao)
dc.subject.keyword奈米結構,沸騰,氧化鎢奈米線,二氧化鈦奈米管,混合結構,zh_TW
dc.subject.keywordnanostructure,boiling,WO3 nanowires,TiO2 nanotubes,hybrid-structure,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201903263
dc.rights.note未授權
dc.date.accepted2019-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved