Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21297
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭秋萍(Chiu-Ping Cheng)
dc.contributor.authorNing Wangen
dc.contributor.author王寧zh_TW
dc.date.accessioned2021-06-08T03:30:31Z-
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation蔡詠竹 (2012). 番茄microtubule-associated RING E3 ligase 1之功能分析。國立台灣大學植物科學研究所碩士論文。
何宜學 (2014). 新穎微管E3 ligase RED基因群之功能分析。國立台灣大學植物科學研究所碩士論文。
李憶敏 (2017). 阿拉伯芥E3 ligases REDs在生殖功能之研究。國立台灣大學植物科學研究所碩士論文。
袁郁璿 (2018). 阿拉伯芥E3 ligases REDs與其作用蛋白質在生殖功能之研究。國立台灣大學植物科學研究所碩士論文。
Alexander, M.P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technology 44, 117-122.
Aoyama, S., Terada, S., Sanagi, M., Hasegawa, Y., Lu, Y., Morita, Y., Chiba, Y., Sato, T., and Yamaguchi, J. (2017). Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis. Biochemical and Biophysical Research Communications 491, 33-39.
Ban, Y., Kobayashi, Y., Hara, T., Hamada, T., Hashimoto, T., Takeda, S., and Hattori, T. (2013). alpha-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. Plant Cell Physiology 54, 848-858.
Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T., and Kropf, D.L. (2008a). The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. The Plant Cell 20, 396-410.
Bolaños-Villegas, P., Xu, W., Martínez-García, M., Pradillo, M., and Wang, Y. (2018). Insights into the role of ubiquitination in meiosis: fertility, adaptation and plant breeding. The Arabidopsis Book 2018.
Callis, J. (2014). The ubiquitination machinery of the ubiquitin system. The Arabidopsis book/American Society of Plant Biologists 12.
Cai, G., Parrotta, L., and Cresti, M. (2015). Organelle trafficking, the cytoskeleton, and pollen tube growth. Journal of Integrative Plant Biology 57, 63-78.
Chan, J., Calder, G., Fox, S., and Lloyd, C. (2005). Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. The Plant Cell 17, 1737-1748.
Chang, X., and Nick, P. (2012). Defence signalling triggered by Flg22 and Harpin is integrated into a different stilbene output in Vitis cells. PLoS One 7, e40446.
Cho, S.K., Ryu, M.Y., Kim, J.H., Hong, J.S., Oh, T.R., Kim, W.T., and Yang, S.W. (2017). RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants. BMB Reports 50, 393.
Christensen, C.A., King, E.J., Jordan, J.R., and Drews, G. (1997a). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction 10, 49-64.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743.
De Bie, P., and Ciechanover, A. (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death and Differentiation 18, 1393.
Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry 78, 399-434.
Dunleavy, J.E.M., O’Bryan, M.K., Stanton, P.G., and O’Donnell, L. (2019). The Cytoskeleton in Spermatogenesis. Reproduction 157, R53.
Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19, 1349.
Fan, L.M., Wang, Y.F., Wang, H., and Wu, W.H. (2001). In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. Journal of Experimental Botany 52, 1603-1614.
Feng, J. (2006). Microtubule: a common target for parkin and Parkinson's disease toxins. Neuroscientist 12, 469-476.
Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F.M., and Dewdney, J. (2007). Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiology 144, 367-379.
Franklin-Tong, V.E. (1999). Signaling and the modulation of pollen tube growth. The Plant Cell 11, 727-738.
Fu, Y. (2015). The cytoskeleton in the pollen tube. Current Opinion in Cell Biology 28, 111-119.
Gleeson, L., Squires, S., and Bisgrove, S.R. (2012). The microtubule associated protein END BINDING 1 represses root responses to mechanical cues. Plant Science 187, 1-9.
Hamada, T., Ueda, H., Kawase, T., and Hara-Nishimura, I. (2014). Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. Plant Physiology 166, 1869-1876.
Hardham, A.R. (2013). Microtubules and biotic interactions. The Plant Journal 75, 278-289.
Hashimoto, T. (2015). Microtubules in plants. Arabidopsis Book 13, e0179.
He, H., Bai, M., Tong, P., Hu, Y., Yang, M., and Wu, H. (2018). CELLULASE6 and MANNANASE7 affect cell differentiation and silique dehiscence. Plant Physiology 176, 2186-2201.
Hoefle, C., Huesmann, C., Schultheiss, H., Börnke, F., Hensel, G., Kumlehn, J., and Hückelhoven, R. (2011). A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. The Plant Cell 23, 2422-2439.
Horio, T., and Murata, T. (2014). The role of dynamic instability in microtubule organization. Frontiers in Plant Science 5, 511.
Hotta, T., Kong, Z., Ho, C.M., Zeng, C.J., Horio, T., Fong, S., Vuong, T., Lee, Y.R., and Liu, B. (2012). Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. The Plant Cell 24, 1494-1509.
Indriolo, E., and Goring, D.R. (2014). A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Frontiers in Plant Science 5, 181.
Iyengar, P.V., Hirota, T., Hirose, S., and Nakamura, N. (2011a). Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. Journal of Biological Chemistry 286, 39082-39090.
Jia, H., Li, J., Zhu, J., Fan, T., Qian, D., Zhou, Y., Wang, J., Ren, H., Xiang, Y., and An, L. (2013). Arabidopsis CROLIN1, a novel plant actin-binding protein, functions in cross-linking and stabilizing actin filaments. Journal of Biological Chemistry 288, 32277-32288.
Jiang, Y., Chang, M., Lan, Y., and Huang, S. (2019). Mechanism of CAP1-mediated apical actin polymerization in pollen tubes. Proceedings of the National Academy of Sciences USA 116, 12084-12093.
Johnson, A.E., Collier, S.E., Ohi, M.D., and Gould, K.L. (2012). Fission yeast Dma1 requires RING domain dimerization for its ubiquitin ligase activity and mitotic checkpoint function. Journal of Biological Chemistry 287, 25741-25748.
Johnson, M.A., Harper, J.F., and Palanivelu, R. (2019). A fruitful journey: Pollen tube navigation from germination to fertilization. Annual Review of Plant Biology 70.
Katsaros, C., Weiss, A., Llangos, I., Theodorou, I., and Wichard, T. (2017). Cell structure and microtubule organisation during gametogenesis of Ulva mutabilis Føyn (Chlorophyta). Botanica Marina 60, 123-135.
Kawamura, E., Himmelspach, R., Rashbrooke, M.C., Whittington, A.T., Gale, K.R., Collings, D.A., and Wasteneys, G.O. (2006). MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiology 140, 102-114.
Kawashima, T., and Berger, F. (2014). Epigenetic reprogramming in plant sexual reproduction. Nature Reviews Genetics 15, 613-624.
Kim, J.H., Cho, S.K., Oh, T.R., Ryu, M.Y., Yang, S.W., and Kim, W.T. (2017a). MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 114, E10009-E10017.
Kim, J.Y., Song, J.T., and Seo, H.S. (2017b). Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions. FEBS Open Biology 7, 1622-1634.
Komaki, S., Abe, T., Coutuer, S., Inze, D., Russinova, E., and Hashimoto, T. (2010). Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. Journal of Cell Science 123, 451-459.
Krtkova, J., Benakova, M., and Schwarzerova, K. (2016). Multifunctional microtubule-associated proteins in plants. Frontiers in Plant Science 7, 474.
Kurepa, J., Wang, S., and Smalle, J. (2012). The role of 26S proteasome-dependent proteolysis in the formation and restructuring of microtubule networks. Plant Signal Behavior 7, 1289-1295.
Lansbergen, G., and Akhmanova, A. (2006). Microtubule plus end: a hub of cellular activities. Traffic 7, 499-507.
Larcher, L., Hara‐Nishimura, I., and Sternberg, L. (2015). Effects of stomatal density and leaf water content on the 18 O enrichment of leaf water. New Phytologist 206, 141-151.
Larsson, E., Vivian-Smith, A., Offringa, R., and Sundberg, E. (2017). Auxin homeostasis in Arabidopsis ovules is anther-dependent at maturation and changes dynamically upon fertilization. Frontiers in Plant Science 8, 1735.
Lee, H.G., and Seo, P.J. (2016). The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96. Nature Communications 7, 12525.
Lee, Y.-R.J., Li, Y., and Liu, B. (2007). Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. The Plant Cell 19, 2595-2605.
Li, M., Li, Y., Zhao, J., Liu, H., Jia, S., Li, J., Zhao, H., Han, S., and Wang, Y. (2016). GpDSR7, a novel E3 ubiquitin ligase gene in grimmia pilifera is involved in tolerance to drought stress in Arabidopsis. PLoS One 11, e0155455.
Li, N., and Li, Y. (2014). Ubiquitin-mediated control of seed size in plants. Frontiers in Plant Science 5, 332.
Li, N., and Li, Y. (2016). Signaling pathways of seed size control in plants. Current Opinion in Plant Biology 33, 23-32.
Lian, N., Liu, X., Wang, X., Zhou, Y., Li, H., Li, J., and Mao, T. (2017). COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation. Proceedings of the National Academy of Sciences USA 114, 12321-12326.
Liew, C.W., Sun, H., Hunter, T., and Day, C.L. (2010). RING domain dimerization is essential for RNF4 function. Biochemical Journal 431, 23-29.
Lim, S.D., Jung, C.G., Park, Y.C., Lee, S.C., Lee, C., Lim, C.W., Kim, D.S., and Jang, C.S. (2015a). Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis. Plant Molecular Biology 89, 365-384.
Liu, J., Zhang, C., Wei, C., Liu, X., Wang, M., Yu, F., Xie, Q., and Tu, J. (2016). The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiology 170, 429-443.
Liu, Z., Persson, S., and Zhang, Y. (2015). The connection of cytoskeletal network with plasma membrane and the cell wall. Journal of Integrative Plant Biology 57, 330-340.
Luo, G., Gu, H., Liu, J., and Qu, L.J. (2012). Four closely-related RING-type E3 ligases, APD1-4, are involved in pollen mitosis II regulation in Arabidopsis. Journal of Integrative Plant Biology 54, 814-827.
Metzger, M.B., Pruneda, J.N., Klevit, R.E., and Weissman, A.M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843, 47-60.
Mimori-Kiyosue, Y., Shiina, N., and Tsukita, S. (2000). The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Current biology 10, 865-868.
Moazzam-Jazi, M., Ghasemi, S., Seyedi, S.M., and Niknam, V. (2018). COP1 plays a prominent role in drought stress tolerance in Arabidopsis and Pea. Plant Physiology and Biochemistry 130, 678-691.
Molines, A.T., Marion, J., Chabout, S., Besse, L., Dompierre, J.P., Mouille, G., and Coquelle, F.M. (2018). EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biology Open 7.
Mukherjee, R., Majumder, P., and Chakrabarti, O. (2017). MGRN1‐mediated ubiquitination of α‐tubulin regulates microtubule dynamics and intracellular transport. Traffic 18, 791-807.
Muller, S. (2015). Plant intracellular transport: tracing functions of the retrograde kinesin. Current Biology 25, R808-810.
Nemoto, K., Ramadan, A., Arimura, G.I., Imai, K., Tomii, K., Shinozaki, K., and Sawasaki, T. (2017). Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation. Nature Communications 8, 1004.
Oh, S.A., Jeon, J., Park, H.J., Grini, P.E., Twell, D., and Park, S.K. (2016). Analysis of gemini pollen 3 mutant suggests a broad function of AUGMIN in microtubule organization during sexual reproduction in Arabidopsis. The Plant Journal 87, 188-201.
Oh, S.A., Park, K.S., Twell, D., and Park, S.K. (2010). The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. The Plant Journal 64, 839-850.
Oh, S.A., Twell, D., and Park, S.K. (2011). SIDECAR POLLEN suggests a plant-specific regulatory network underlying asymmetric microspore division in Arabidopsis. Plant Signal Behavior 6, 416-419.
Oh, T.R., Kim, J.H., Cho, S.K., Ryu, M.Y., Yang, S.W., and Kim, W.T. (2017). AtAIRP2 E3 ligase affects ABA and high-salinity responses by stimulating its ATP1/SDIRIP1 substrate turnover. Plant Physiology 174, 2515-2531.
Onelli, E., Idilli, A.I., and Moscatelli, A. (2015). Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. Frontiers in Plant Science 6, 51.
Orosa, B., He, Q., Mesmar, J., Gilroy, E.M., McLellan, H., Yang, C., Craig, A., Bailey, M., Zhang, C., Moore, J.D., Boevink, P.C., Tian, Z., Birch, P.R., and Sadanandom, A. (2017). BTB-BACK domain protein POB1 suppresses immune cell death by targeting ubiquitin E3 ligase PUB17 for degradation. PLoS Genet 13, e1006540.
Paez Valencia, J., Goodman, K., and Otegui, M.S. (2016). Endocytosis and endosomal trafficking in plants. Annual Review of Plant Biology 67, 309-335.
Pan, R., Satkovich, J., and Hu, J. (2016). E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis. Proceedings of the National Academy of Sciences USA 113, E7307-E7316.
Park, G.T., Frost, J.M., Park, J.S., Kim, T.H., Lee, J.S., Oh, S.A., Twell, D., Brooks, J.S., Fischer, R.L., and Choi, Y. (2014a). Nucleoporin MOS7/Nup88 is required for mitosis in gametogenesis and seed development in Arabidopsis. Proceedings of the National Academy of Sciences USA 111, 18393-18398.
Park, Y.C., Chapagain, S., and Jang, C.S. (2018). The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). Planta 247, 875-886.
Parrotta, L., Cresti, M., and Cai, G. (2014). Accumulation and post-translational modifications of plant tubulins. Plant Biology 16, 521-527.
Plechanovova, A., Jaffray, E.G., McMahon, S.A., Johnson, K.A., Navratilova, I., Naismith, J.H., and Hay, R.T. (2011). Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nature Structural Molecular Biology 18, 1052-1059.
Po‐Wen, C., Singh, P., and Zimmerli, L. (2013). Priming of the Arabidopsis pattern‐triggered immunity response upon infection by necrotrophic P ectobacterium carotovorum bacteria. Molecular Plant Pathology 14, 58-70.
Qin, T., Liu, X., Li, J., Sun, J., Song, L., and Mao, T. (2014). Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. The Plant Cell 26, 325-339.
Qu, X., Jiang, Y., Chang, M., Liu, X., Zhang, R., and Huang, S. (2014). Organization and regulation of the actin cytoskeleton in the pollen tube. Frontiers in Plant Science 5, 786.
Qu, X., Zhang, H., Xie, Y., Wang, J., Chen, N., and Huang, S. (2013). Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. The Plant Cell 25, 1803-1817.
Rittinger, K., and Ikeda, F. (2017). Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biology 7.
Rojas-Fernandez, A., Plechanovova, A., Hattersley, N., Jaffray, E., Tatham, M.H., and Hay, R.T. (2014). SUMO chain-induced dimerization activates RNF4. Molecular Cell 53, 880-892.
Sadanandom, A., Bailey, M., Ewan, R., Lee, J., and Nelis, S. (2012). The ubiquitin-proteasome system: central modifier of plant signalling. New Phytologist 196, 13-28.
Scialpi, F., Malatesta, M., Peschiaroli, A., Rossi, M., Melino, G., and Bernassola, F. (2008). Itch self-polyubiquitylation occurs through lysine-63 linkages. Biochemical Pharmacology 76, 1515-1521.
Sharma, B., Joshi, D., Yadav, P.K., Gupta, A.K., and Bhatt, T.K. (2016). Role of ubiquitin-mediated degradation system in plant biology. Frontiers in Plant Science 7, 806.
Sheng, X., Hu, Z., Lu, H., Wang, X., Baluska, F., Samaj, J., and Lin, J. (2006a). Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. Plant Physiology 141, 1578-1590.
Shu, K., and Yang, W. (2017). E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. The Plant Cell Physiology 58, 1461-1476.
Slep, K.C. (2010). Structural and mechanistic insights into microtubule end-binding proteins. Current Opinion in Cell Biology 22, 88-95.
Smertenko, A., and Franklin-Tong, V.E. (2011). Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differentiation 18, 1263-1270.
Staiger, C.J., Poulter, N.S., Henty, J.L., Franklin-Tong, V.E., and Blanchoin, L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. Journal of Experimental Botany 61, 1969-1986.
Stone, S.L. (2014). The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Frontiers in Plant Science 5, 135.
Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiology 137, 13-30.
Trockenbacher, A., Suckow, V., Foerster, J., Winter, J., Krauss, S., Ropers, H.H., Schneider, R., and Schweiger, S. (2001). MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nature Genetics 29, 287-294.
Trujillo, M., and Shirasu, K. (2010). Ubiquitination in plant immunity. Current Opinion in Cell Biology 13, 402-408.
Twell, D. (2011). Male gametogenesis and germline specification in flowering plants. Sexual Plant Reproduction 24, 149-160.
Van Damme, D., Bouget, F.Y., Van Poucke, K., Inze, D., and Geelen, D. (2004). Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. The Plant Journal 40, 386-398.
Vaughan, K.T. (2005). TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. Journal of Cell Biology 171, 197-200.
Wang, S., Cao, L., and Wang, H. (2016). Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. Journal of Experimental Botany 67, 3277-3288.
Wang, S., Kurepa, J., Hashimoto, T., and Smalle, J.A. (2011). Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. The Plant Cell 23, 3412-3427.
Wang, X., and Jiang, X. (2012). Mdm2 and MdmX partner to regulate p53. FEBS Letters 586, 1390-1396.
Wang, X., Wang, K., Yin, G., Liu, X., Liu, M., Cao, N., Duan, Y., Gao, H., Wang, W., and Ge, W. (2018). Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiology 176, 1993-2006.
Wang, Y., Zhang, W.Z., Song, L.F., Zou, J.J., Su, Z., and Wu, W.H. (2008). Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology 148, 1201-1211.
Watkins, G.R., Wang, N., Mazalouskas, M.D., Gomez, R.J., Guthrie, C.R., Kraemer, B.C., Schweiger, S., Spiller, B.W., and Wadzinski, B.E. (2012). Monoubiquitination promotes calpain cleavage of the protein phosphatase 2A (PP2A) regulatory subunit α4, altering PP2A stability and microtubule-associated protein phosphorylation. Journal of Biological Chemistry 287, 24207-24215.
Yadegari, R., and Drews, G.N. (2004). Female gametophyte development. The Plant Cell 16 Suppl, S133-141.
Yamaguchi, K., Mezaki, H., Fujiwara, M., Hara, Y., and Kawasaki, T. (2017). Arabidopsis ubiquitin ligase PUB12 interacts with and negatively regulates Chitin Elicitor Receptor Kinase 1 (CERK1). PLoS One 12, e0188886.
Yang, Y., Fu, D., Zhu, C., He, Y., Zhang, H., Liu, T., Li, X., and Wu, C. (2015). The RING-finger ubiquitin ligase HAF1 mediates heading date 1 degradation during photoperiodic flowering in rice. The Plant Cell 27, 2455-2468.
Yau, R., and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nature Cell Biology 18, 579-586.
Ye, J., Zhang, W., and Guo, Y. (2013). Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. The Plant Cell Reports 32, 139-148.
Yoo, S.-D., Cho, Y.-H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2, 1565.
Zhang, H., Cui, F., Wu, Y., Lou, L., Liu, L., Tian, M., Ning, Y., Shu, K., Tang, S., and Xie, Q. (2015). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. The Plant Cell 27, 214-227.
Zheng, Y., Xie, Y., Jiang, Y., Qu, X., and Huang, S. (2013). Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. The Plant Cell 25, 3405-3423.
Zhu, C., and Dixit, R. (2012). Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. Protoplasma 249, 887-899.
Zhu, L., Zhang, Y., Kang, E., Xu, Q., Wang, M., Rui, Y., Liu, B., Yuan, M., and Fu, Y. (2013). MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. The Plant Cell 25, 851-867.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21297-
dc.description.abstract泛素化系統在許多生理功能具重要調控功能,而與目標蛋白高度專一結合的E3泛素接合酶 (E3 ligase)更扮演關鍵角色,然而目前大多數的E3 ligases尚未被研究。本研究室先前發現數個座落於微管且功能未知的植物RING-H2 type E3 ligases,將其命名為RING-type E3 ligase with an uncharacterized DAR1 domain (REDs)。本研究旨在了解阿拉伯芥RED1與RED2在有性生殖與逆境反應之功能。基因轉錄分析結果顯示RED1與RED2在花之表現量最高。酵母菌雙雜交分析結果顯示RED2形成homodimer需要DAR1 domain的存在,然而RED1可僅透過其RING domain與RED2形成heterodimer,且in vitro ubiquitination 結果顯示RED1與RED2可能會相互泛素化彼此。RED1與RED2之單基因缺失突變株並無生殖缺失,但其雙基因突變植物具明顯種子發育缺失,且雙基因突變植物與野生型植物之正反雜交試驗,結果顯示這兩個基因可能同時參與雌配子體與雄配子體之發育,雙基因突變植物之花粉管萌發率下降且胚株發育延遲。另外,利用阿拉伯芥原生質體搭配螢光觀察結果顯示RED1與RED2可能會影響葉部的微管動態。此外,RED1與RED2在乾旱與鹽害逆境反應可能未扮演重要的角色。以上結果指出RED1與RED2在阿拉伯芥有性生殖扮演關鍵之正向調控角色。為釐清其具體調控機制,目前正在製備各式互補回復株與將用於觀察微管動態之植物材料。我們期許目前所得之研究資訊與未來更進一步之研究有助於對E3 ligases有更完整的了解。zh_TW
dc.description.abstractProtein ubiquitination is an important mechanism in regulating key cellular functions. The E3 ligases play critical roles in specific recognition of the targets; however, most plant E3 ligases are not characterized. We previously identified a group of uncharacterized plant microtubule-localized RING-H2 type E3 ligases, named RING-type E3 ligases with an uncharacterized DAR1 domain (REDs). This study aims to characterize roles of REDs in Arabidopsis reproduction and stress responses. Results of spatiotemporal transcriptional analyses by RT-qPCR assay showed that RED1 and RED2 highly express in flower. Yeast-two-hybrid (Y2H) assay revealed that the DAR1 domain is required for RED2 homodimerization, but not for RED1-RED2 interaction, and that RED1 and RED2 can form heterodimers via the RING domain of RED1. In addition, in vitro ubiquitination assay showed that RED1 and RED2 could ubiquitinate each other. red1red2 mutant plants, but not the single-gene mutants, displayed significant defects in seed production. Reciprocal cross assay revealed a critical role of RED1 and RED2 in both male and female gametogenesis, and the double mutants displayed defective pollen germination and ovule development. Microscope fluoresce assay showed that the properties of the microtubule in leaf might be affected in red1red2. Moreover, RED1 and RED2 may not play obvious roles in responses to drought and salinity stress. These results suggest that RED1 and RED2 play a vital positive role in Arabidopsis reproduction. To further elucidate the involved regulatory mechanisms, plant materials to be used for genetic complementation and microtubule dynamics analyses have being prepared. These results and the on-going studies are expected to help elucidate the regulatory role of these REDs in plant sexual reproduction.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:31Z (GMT). No. of bitstreams: 1
ntu-108-R06b42011-1.pdf: 8817949 bytes, checksum: e054d459fce8621f2a40927a932427cb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 III
Abstract IV
常用縮寫與全名對照表 V
目錄 VII
圖目錄 XI
附錄目錄 XII
第一章 前言 1
1. 泛素化系統及其功能 1
1.1. 泛素化系統 1
1.2. 阿拉伯芥之E3 ligase 1
2. 細胞骨架與其功能 3
2.1. 細胞骨架 3
2.2. 微管結合蛋白 4
2.3. 阿拉伯芥細胞骨架與MAPs參與之功能 5
3. 植物之有性生殖 6
3.1. 植物配子體之發育 6
3.2. 阿拉伯芥配子體之調控因子 7
3.3. 阿拉伯芥花粉管萌發之調控因子 7
4. 前人研究與研究動機 8
4.1.前人研究 8
第二章 材料與方法 10
1. 植物材料簡介 10
2. 實驗用菌體與培養條件 10
3. 基因選殖常用實驗 10
3.1. 聚合酶連鎖反應 11
3.2. DNA 瓊脂糖凝膠電泳 11
3.3. DNA 純化 11
3.4. DNA 限制酶消化水解 12
3.5. TOPO® 質體構築 12
3.6. LR 重組互換反應 12
3.7. 大腸桿菌勝任細胞熱休克轉型作用 13
3.8. 電穿孔轉型作用之勝任細胞置備 13
3.9. 電穿孔轉型作用 13
3.10. 大腸桿菌質體萃取 14
4. 植物DNA萃取 14
4.1. 傳統genomic DNA萃取 14
4.2. genomic DNA 快速萃取法 14
5. 轉錄表現分析 15
5.1. 植物RAN萃取 15
5.2. 反轉錄聚合酶連鎖反應 15
5.3. 半定量RT-PCR 16
5.4. 即時定量PCR 16
6. 酵母菌雜合系統 17
6.1. 構築載體 17
6.2. 製備酵母菌勝任細胞 17
6.3. 酵母菌雙雜合系統 17
7. 體外泛素化試驗 18
7.1. 構築載體 18
7.2. 蛋白質表現 18
7.3. 蛋白質純化 18
7.4. 蛋白質定量 19
7.5. 蛋白質電泳 19
7.6. 西方墨點法 20
7.7. in vitro ubiquitination assay 20
8. 轉殖阿拉伯芥之製備與篩選 21
8.1. 阿拉伯芥基因轉殖 21
8.2. 基因轉殖植物篩選與檢驗 21
9. 植物生殖表現型檢測 21
9.1. 互交測試 21
9.2. 果莢與種子特性之檢測 22
9.3. 花粉特性檢測 22
9.4. 胚珠型態檢測 23
10. 蛋白質在阿拉伯芥原生質體之表現分析 23
10.1. 中量質體萃取 23
10.2. 製備阿拉伯芥原生質體與轉染作用 24
10.3. 螢光檢測計算 24
11. 根部反應表現型檢測 24
12. 非生物逆境測試 24
12.1. 葉面水分散失率測試 24
12.2. 乾旱逆境測試 25
12.3. 鹽害逆境測試 25
13. 生物逆境測試 25
13.1.細菌性軟腐病菌接種測試 25
13.2.真菌性灰黴病菌接種測試 26
14. 統計分析 26
第三章 結果 27
1. RED1與RED2之蛋白質交互作用片段 27
2. RED1與RED2互為受質 27
3. RED1與RED2之表現特性分析 28
4. RED1與RED2對果莢與種子發育之影響 28
5. red1red2作為父本與母本之生殖力分析 28
6. red1red2植株之花粉與胚珠發育 29
7. red1red2葉原生質體中之微管特性 29
8. RED1與RED2對根部反應之影響 29
9. RED1與RED2對逆境與病害反應之影響 30
第四章 討論 31
1. RED1與RED2可能有互相調控關係 31
2. RED1與RED2可能具調控微管功能 32
3. RED1與RED2為生殖功能之關鍵調控者 33
4. RED1與RED2之其他可能功能 36
5. 結語 37
參考文獻 38
dc.language.isozh-TW
dc.title阿拉伯芥E3 ligase RED1與RED2 在有性生殖與逆境反應之研究zh_TW
dc.titleStudying RED1 and RED2 in reproduction and stress responses in Arabidopsisen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭貽生(Yi-Sheng Cheng),王雅筠(Ya-Yun Wang),林盈仲(Ying-Chung Lin),靳宗洛(Tsung-Luo Jinn)
dc.subject.keywordRED,泛素化系統,E3 ligase,配子體發育,微管,zh_TW
dc.subject.keywordRED,ubiquitination,E3 ligase,gametogenesis,microtubule,en
dc.relation.page111
dc.identifier.doi10.6342/NTU201903530
dc.rights.note未授權
dc.date.accepted2019-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved