Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21288
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証(Wen-Jeng Hsueh)
dc.contributor.authorPeng Tsengen
dc.contributor.author曾鵬zh_TW
dc.date.accessioned2021-06-08T03:30:19Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-01-28
dc.identifier.citation[1] I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323-410 (2004).
[2] J. Barnaś and A. Fert, “Magnetoresistance oscillations due to charging effects in double ferromagnetic tunnel junctions,” Phys. Rev. Lett. 80, 1058-1061 (1998).
[3] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers,” Nat. Mater. 3, 862-867 (2004).
[4] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, “Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2,” Nature 563, 94-99 (2018).
[5] D. C. Vaz, P. Noël, A. Johansson, B. Göbel, F. Y. Bruno, G. Singh, S. McKeown-Walker, F. Trier, L. M. Vicente-Arche, A. Sander, S. Valencia, P. Bruneel, M. Vivek, M. Gabay, N. Bergeal, F. Baumberger, H. Okuno, A. Barthélémy, A. Fert, L. Vila, I. Mertig, J. P. Attané, and M. Bibes, “Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas,” Nature Materials 18, 1187-1193 (2019).
[6] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, “Prediction and observation of an antiferromagnetic topological insulator,” Nature 576, 416-422 (2019).
[7] H. Tsai, T. Higo, K. Kondou, T. Nomoto, A. Sakai, A. Kobayashi, T. Nakano, K. Yakushiji, R. Arita, S. Miwa, Y. Otani, and S. Nakatsuji, “Electrical manipulation of a topological antiferromagnetic state,” Nature 580, 608-613 (2020).
[8] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions,” Nat. Mater. 3, 868-871 (2004).
[9] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, “Tunnel magnetoresistance of 604% at 300K by suppression of ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature,” Appl. Phys. Lett. 93, 082508 (2008).
[10] J. Wunderlich, “Current-switched magnetic insulator,” Nat. Mater. 16, 284-285 (2017).
[11] C. F. Pai, “Switching by topological insulators,” Nat. Mater. 17, 755-757 (2018).
[12] P. H. Lin, B. Y. Yang, M. H. Tsai, P. C. Chen, K. F. Huang, H. H. Lin, and C. H. Lai, “Manipulating exchange bias by spin–orbit torque,” Nat. Mater. 18, 335-341 (2019).
[13] J. Yu, D. Bang, R. Mishra, R. Ramaswamy, J. H. Oh, H. J. Park, Y. Jeong, P. Van Thach, D. K. Lee, G. Go, S. W. Lee, Y. Wang, S. Shi, X. Qiu, H. Awano, K. J. Lee, and H. Yang, “Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers,” Nat. Mater. 18, 29-34 (2019).
[14] X. Chen, X. Zhou, R. Cheng, C. Song, J. Zhang, Y. Wu, Y. Ba, H. Li, Y. Sun, Y. You, Y. Zhao, and F. Pan, “Electric field control of néel spin–orbit torque in an antiferromagnet,” Nat. Mater. 18, 931-935 (2019).
[15] M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang, J. Wei, W. Kang, Y. Zhang, J. Langer, B. Ocker, A. Fert, and W. Zhao, “Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance,” Nat. Commun. 9, 671 (2018).
[16] D. Pesin and A. H. MacDonald, “Spintronics and pseudospintronics in graphene and topological insulators,” Nat. Mater. 11, 409-416 (2012).
[17] R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, and M. S. Arnold, “Direct oriented growth of armchair graphene nanoribbons on germanium,” Nat. Commun. 6, 8006 (2015).
[18] H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, and T. Kato, “Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays,” Nat. Commun. 7, 11797 (2016).
[19] P. H. Jacobse, A. Kimouche, T. Gebraad, M. M. Ervasti, J. M. Thijssen, P. Liljeroth, and I. Swart, “Electronic components embedded in a single graphene nanoribbon,” Nat. Commun. 8, 119 (2017).
[20] M. Mehdi Pour, A. Lashkov, A. Radocea, X. Liu, T. Sun, A. Lipatov, R. A. Korlacki, M. Shekhirev, N. R. Aluru, J. W. Lyding, V. Sysoev, and A. Sinitskii, “Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing,” Nat. Commun. 8, 820 (2017).
[21] G. D. Nguyen, H. Z. Tsai, A. A. Omrani, T. Marangoni, M. Wu, D. J. Rizzo, G. F. Rodgers, R. R. Cloke, R. A. Durr, Y. Sakai, F. Liou, A. S. Aikawa, J. R. Chelikowsky, S. G. Louie, F. R. Fischer, and M. F. Crommie, “Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor,” Nat. Nanotechnol. 12, 1077-1082 (2017).
[22] D. J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Zhao, H. Rodriguez, S. G. Louie, M. F. Crommie, and F. R. Fischer, “Topological band engineering of graphene nanoribbons,” Nature 560, 204-208 (2018).
[23] J. Wang and S. C. Zhang, “Topological states of condensed matter,” Nat. Mater. 16, 1062-1067 (2017).
[24] M. Dc, R. Grassi, J. Y. Chen, M. Jamali, D. Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J. P. Wang, “Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films,” Nat. Mater. 17, 800-807 (2018).
[25] J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S. C. Zhang, B. Wang, and J. G. Hou, “Epitaxial growth of ultraflat stanene with topological band inversion,” Nat. Mater. 17, 1081-1086 (2018).
[26] R. Noguchi, T. Takahashi, K. Kuroda, M. Ochi, T. Shirasawa, M. Sakano, C. Bareille, M. Nakayama, M. D. Watson, K. Yaji, A. Harasawa, H. Iwasawa, P. Dudin, T. K. Kim, M. Hoesch, V. Kandyba, A. Giampietri, A. Barinov, S. Shin, R. Arita, T. Sasagawa, and T. Kondo, “A weak topological insulator state in quasi-one-dimensional bismuth iodide,” Nature 566, 518-522 (2019).
[27] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, “A complete catalogue of high-quality topological materials,” Nature 566, 480-485 (2019).
[28] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, “Catalogue of topological electronic materials,” Nature 566, 475-479 (2019).
[29] D. Yildiz, M. Kisiel, U. Gysin, O. Gürlü, and E. Meyer, “Mechanical dissipation via image potential states on a topological insulator surface,” Nat. Mater. 18, 1201-1206 (2019).
[30] S. N. Kempkes, M. R. Slot, J. J. van den Broeke, P. Capiod, W. A. Benalcazar, D. Vanmaekelbergh, D. Bercioux, I. Swart, and C. Morais Smith, “Robust zero-energy modes in an electronic higher-order topological insulator,” Nat. Mater. 18, 1292-1297 (2019).
[31] J. Jiang, D. Xiao, F. Wang, J. H. Shin, D. Andreoli, J. Zhang, R. Xiao, Y. F. Zhao, M. Kayyalha, L. Zhang, K. Wang, J. Zang, C. Liu, N. Samarth, M. H. W. Chan, and C. Z. Chang, “Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures,” Nat. Mater. (2020).
[32] W. Y. Kim and K. S. Kim, “Prediction of very large values of magnetoresistance in a graphene nanoribbon device,” Nat. Nanotechnol. 3, 408-412 (2008).
[33] R. Qin, J. Lu, L. Lai, J. Zhou, H. Li, Q. Liu, G. Luo, L. Zhao, Z. Gao, W. N. Mei, and G. Li, “Room-temperature giant magnetoresistance over one billion percent in a bare graphene nanoribbon device,” Phys. Rev. B 81, 233403 (2010).
[34] G. Liang, S. Bala Kumar, M. B. A. Jalil, and S. G. Tan, “High magnetoresistance at room temperature in p-i-n graphene nanoribbons due to band-to-band tunneling effects,” Appl. Phys. Lett. 99, 083107 (2011).
[35] T. Shoman, A. Takayama, T. Sato, S. Souma, T. Takahashi, T. Oguchi, K. Segawa, and Y. Ando, “Topological proximity effect in a topological insulator hybrid,” Nat. Commun. 6, 6547 (2015).
[36] Y. T. Fanchiang, K. H. M. Chen, C. C. Tseng, C. C. Chen, C. K. Cheng, S. R. Yang, C. N. Wu, S. F. Lee, M. Hong, and J. Kwo, “Strongly exchange-coupled and surface-state-modulated magnetization dynamics in Bi2Se3/yttrium iron garnet heterostructures,” Nat. Commun. 9, 223 (2018).
[37] F. Lüpke, D. Waters, S. C. de la Barrera, M. Widom, D. G. Mandrus, J. Yan, R. M. Feenstra, and B. M. Hunt, “Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2,” Nat. Phys. (2020).
[38] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Žutić, “Tunneling planar Hall effect in topological insulators: Spin valves and amplifiers,” Phys. Rev. Lett. 117, 166806 (2016).
[39] Q. L. He, X. Kou, A. J. Grutter, G. Yin, L. Pan, X. Che, Y. Liu, T. Nie, B. Zhang, S. M. Disseler, B. J. Kirby, W. Ratcliff Ii, Q. Shao, K. Murata, X. Zhu, G. Yu, Y. Fan, M. Montazeri, X. Han, J. A. Borchers, and K. L. Wang, “Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures,” Nat. Mater. 16, 94-100 (2017).
[40] K. H. Zhang, Z. C. Wang, Q. R. Zheng, and G. Su, “Gate-voltage controlled electronic transport through a ferromagnet/normal/ferromagnet junction on the surface of a topological insulator,” Phys. Rev. B 86, 174416 (2012).
[41] B. Xia, P. Ren, A. Sulaev, Z. P. Li, P. Liu, Z. L. Dong, and L. Wang, “Anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures,” AIP Adv. 2, 042171 (2012).
[42] J. Guo, H. Bao, W. Liao, and H. Zhao, “Electrically controllable conductance and tunneling magnetoresistance through a topological insulator quantum well coupled to ferromagnetic electrodes,” Appl. Phys. A 117, 1025-1029 (2014).
[43] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 2472-2475 (1988).
[44] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, 4828-4830 (1989).
[45] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183-191 (2007).
[46] A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530-1534 (2009).
[47] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109-162 (2009).
[48] E. W. Hill, A. K. Geim, K. Novoselov, F. Schedin, and P. Blake, “Graphene spin valve devices,” IEEE Trans. Magn. 42, 2694-2696 (2006).
[49] H. Haugen, D. Huertas-Hernando, and A. Brataas, “Spin transport in proximity-induced ferromagnetic graphene,” Phys. Rev. B 77, 115406 (2008).
[50] A. G. Swartz, P. M. Odenthal, Y. Hao, R. S. Ruoff, and R. K. Kawakami, “Integration of the ferromagnetic insulator EuO onto graphene,” ACS Nano 6, 10063-10069 (2012).
[51] M. Evelt, H. Ochoa, O. Dzyapko, V. E. Demidov, A. Yurgens, J. Sun, Y. Tserkovnyak, V. Bessonov, A. B. Rinkevich, and S. O. Demokritov, “Chiral charge pumping in graphene deposited on a magnetic insulator,” Phys. Rev. B 95, 024408 (2017).
[52] S. R. Yang, Y. T. Fanchiang, C. C. Chen, C. C. Tseng, Y. C. Liu, M. X. Guo, M. Hong, S. F. Lee, and J. Kwo, “Evidence for exchange Dirac gap in magnetotransport of topological insulator–magnetic insulator heterostructures,” Phys. Rev. B 100, 045138 (2019).
[53] R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, “Quantized anomalous Hall effect in magnetic topological insulators,” Science 329, 61-64 (2010).
[54] T. Yokoyama, Y. Tanaka, and N. Nagaosa, “Anomalous magnetoresistance of a two-dimensional ferromagnet/ferromagnet junction on the surface of a topological insulator,” Phys. Rev. B 81, 121401 (2010).
[55] B. Dlubak, M. B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W. A. De Heer, F. Petroff, A. Anane, P. Seneor, and A. Fert, “Highly efficient spin transport in epitaxial graphene on SiC,” Nat. Phys. 8, 557-561 (2012).
[56] M. V. Kamalakar, C. Groenveld, A. Dankert, and S. P. Dash, “Long distance spin communication in chemical vapour deposited graphene,” Nat. Commun. 6, 6766 (2015).
[57] C. H. Li, O. M. J. van ‘t Erve, S. Rajput, L. Li, and B. T. Jonker, “Direct comparison of current-induced spin polarization in topological insulator Bi2Se3 and InAs Rashba states,” Nat. Commun. 7, 13518 (2016).
[58] F. Katmis, V. Lauter, F. S. Nogueira, B. A. Assaf, M. E. Jamer, P. Wei, B. Satpati, J. W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J. S. Moodera, “A high-temperature ferromagnetic topological insulating phase by proximity coupling,” Nature 533, 513-516 (2016).
[59] M. D. Li, C. Z. Chang, B. J. Kirby, M. E. Jamer, W. P. Cui, L. J. Wu, P. Wei, Y. M. Zhu, D. Heiman, J. Li, and J. S. Moodera, “Proximity-driven enhanced magnetic order at ferromagnetic-insulator–magnetic-topological-insulator interface,” Phys. Rev. Lett. 115, 087201 (2015).
[60] C. Tang, C. Z. Chang, G. Zhao, Y. Liu, Z. Jiang, C. X. Liu, M. R. McCartney, D. J. Smith, T. Chen, J. S. Moodera, and J. Shi, “Above 400-K robust perpendicular ferromagnetic phase in a topological insulator,” Sci. Adv. 3, e1700307 (2017).
[61] J. F. Sierra, I. Neumann, J. Cuppens, B. Raes, M. V. Costache, and S. O. Valenzuela, “Thermoelectric spin voltage in graphene,” Nat. Nanotechnol. 13, 107-111 (2018).
[62] J. Xu, S. Singh, J. Katoch, G. Wu, T. Zhu, I. Žutić, and R. K. Kawakami, “Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts,” Nat. Commun. 9, 2869 (2018).
[63] D. A. Solis, A. Hallal, X. Waintal, and M. Chshiev, “Proximity magnetoresistance in graphene induced by magnetic insulators,” Phys. Rev. B 100, 104402 (2019).
[64] S. Roy, K. Roychowdhury, and S. Das, “Pseudospin-valve effect on transport in junctions of three-dimensional topological insulator surfaces,” New J. Phys. 18, 073038 (2016).
[65] S. Sayed, S. Hong, and S. Datta, “Multi-terminal spin valve on channels with spin-momentum locking,” Sci. Rep. 6, 35658 (2016).
[66] J. Hu, D. A. Deen, and S. J. Koester, “AC small-signal model for magnetoresistive lateral spin valves,” IEEE Trans. Magn. 55, 1-8 (2019).
[67] A. A. Baker, A. I. Figueroa, L. J. Collins-McIntyre, G. van der Laan, and T. Hesjedal, “Spin pumping in ferromagnet-topological insulator-ferromagnet heterostructures,” Sci. Rep. 5, 7907 (2015).
[68] P. V. Silva, A. Saraiva-Souza, D. W. Maia, F. M. Souza, A. G. S. Filho, V. Meunier, and E. C. Girão, “High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device,” J. Magn. Magn. Mater. 451, 532-539 (2018).
[69] M. Zare, “Resonance spin-transfer torque in ferromagnetic/normal-metal/ferromagnetic spin-valve structure of topological insulators,” J. Magn. Magn. Mater. 492, 165605 (2019).
[70] V. Zatko, M. Galbiati, S. M. M. Dubois, M. Och, P. Palczynski, C. Mattevi, P. Brus, O. Bezencenet, M. B. Martin, B. Servet, J. C. Charlier, F. Godel, A. Vecchiola, K. Bouzehouane, S. Collin, F. Petroff, B. Dlubak, and P. Seneor, “Band-structure spin-filtering in vertical spin valves based on chemical vapor deposited WS2,” ACS Nano 13, 14468-14476 (2019).
[71] M. Gani, K. A. Shah, S. A. Parah, and P. Misra, “Room temperature high giant magnetoresistance graphene based spin valve and its application for realization of logic gates,” Phys. Lett. A 384, 126171 (2020).
[72] M. Zhou, H. Jin, and Y. Xing, “In-plane dual-gated spin-valve device based on the zigzag graphene nanoribbon,” Phys. Rev. Appl. 13, 044006 (2020).
[73] P. Tseng and W. J. Hsueh, “Ultra-giant magnetoresistance in graphene-based spin valves with gate-controlled potential barriers,” New J. Phys. 21, 113035 (2019).
[74] H. Raza, Graphene nanoelectronics: Metrology, synthesis, properties and applications, Springer, New York (2012).
[75] Y. C. Lin, C. H. Tsou, and W. J. Hsueh, “Ultra-slow light in one-dimensional cantor photonic crystals,” Opt. Lett. 43, 4120-4123 (2018).
[76] P. Tseng, C. H. Chen, S. A. Hsu, and W. J. Hsueh, “Large negative differential resistance in graphene nanoribbon superlattices,” Phys. Lett. A 382, 1427-1431 (2018).
[77] C. H. Chen, P. Tseng, C. W. Ko, and W. J. Hsueh, “Huge spin-transfer torque in a magnetic tunnel junction by a superlattice barrier,” Phys. Lett. A 381, 3124-3128 (2017).
[78] R. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys. 23, 779-784 (1952).
[79] Y. M. Blanter and M. Büttiker, “Shot noise in mesoscopic conductors,” Phys. Rep. 336, 1-166 (2000).
[80] J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart, “Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom,” Nat. Commun. 4, 2023 (2013).
[81] J. P. Llinas, A. Fairbrother, G. Borin Barin, W. Shi, K. Lee, S. Wu, B. Yong Choi, R. Braganza, J. Lear, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. Müllen, F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel, and J. Bokor, “Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons,” Nat. Commun. 8, 633 (2017).
[82] J. Munárriz, C. Gaul, A. V. Malyshev, P. A. Orellana, C. A. Müller, and F. Domínguez-Adame, “Strong spin-dependent negative differential resistance in composite graphene superlattices,” Phys. Rev. B 88, 155423 (2013).
[83] C. H. Chen and W. J. Hsueh, “Enhancement of tunnel magnetoresistance in magnetic tunnel junction by a superlattice barrier,” Appl. Phys. Lett. 104, 042405 (2014).
[84] C. H. Chen, Y. H. Cheng, C. W. Ko, and W. J. Hsueh, “Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer,” Appl. Phys. Lett. 107, 152401 (2015).
[85] C. H. Chang, C. W. Tsao, and W. J. Hsueh, “Superradiant modes in fibonacci quantum wells under resonant conditions,” New J. Phys. 16, 113069 (2014).
[86] C. H. Chang, Y. H. Cheng, and W. J. Hsueh, “Twin extra-high photoluminescence in resonant double-period quantum wells,” Opt. Lett. 39, 6581-6584 (2014).
[87] Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, “Massive dirac fermion on the surface of a magnetically doped topological insulator,” Science 329, 659-662 (2010).
[88] Y. Xu, G. Jiang, I. Miotkowski, R. R. Biswas, and Y. P. Chen, “Tuning insulator-semimetal transitions in 3D topological insulator thin films by intersurface hybridization and in-plane magnetic fields,” Phys. Rev. Lett. 123, 207701 (2019).
[89] P. Tseng, Z. Y. Chen, and W. J. Hsueh, “Superlattice-barrier magnetic tunnel junctions with half-metallic magnets,” New J. Phys. 22, 093005 (2020).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21288-
dc.description.abstract磁阻元件的主要應用於硬碟讀取磁頭、磁性隨機存取記憶體、磁性感測器與磁性場效電晶體等,目前主流以氧化鎂作為穿隧層的磁性穿隧接面元件,在實際應用中室溫下最高的磁阻值大約為600%。
本論文研究了多個上閘極電位障勢壘的石墨烯與拓撲絕緣體自旋閥,並觀察到優異的磁阻表現及自旋傳輸現象。在基於雙閘極勢壘石墨烯奈米帶的自旋閥中,其高達104 %的磁阻值約是傳統氧化鎂磁性穿隧接面磁阻的15倍,此現象是由反平行配置獨特的電流抑制效果所導致,如此巨大的反平行態電阻是歸因於結構中能在適當的入射能量窗口中調製共振和非共振態通道。此外,本研究發現通過週期性電位障勢壘能夠更進一步提高元件的磁阻性能表現,結果顯示,在具有10單元勢壘的自旋閥中,室溫下的磁阻值超過109 %,對於自旋閥或磁性穿隧接面而言此為非常高的性能表現。當考慮到現實的限制時,本研究採用3單元電位障勢壘的自旋閥元件,其在室溫下仍保持在105 %以上的磁阻值,而在低溫條件下,其磁阻值超過1010 %,通過此研究顯示,經由調整能量窗口中的適當導通帶和禁帶能夠引發超高磁阻的表現,然而,當元件設計不滿足上述討論的條件時,結果得到低於100%非常普通的磁阻。
對於研究中的另一種元件,基於拓撲絕緣體薄膜的自旋閥,在低溫近似費米能階附近顯示出有趣的磁阻振盪,結果顯示,其磁阻表現只有少數具高磁阻值的平坦帶能夠被應用於元件中。根據電流分析,在具有3單元上閘極電位障勢壘的自旋閥中,其室溫下的磁阻值能夠高於1000%,結果顯示平行與反平行配置之間的電阻差異非常顯著,且磁阻效應受到拓樸薄膜厚度、閘極電位、閘極尺寸和閘極分佈等因子的強烈影響。本論文詳盡的研究了二為狄拉克材料自旋閥中的自旋電子傳輸行為,以及超巨大的磁阻效應和其形成的原因,這樣的新穎元件能夠應用於新型儲存記憶體、感測器讀取裝置和自旋電晶體等高效自旋電子元件。
zh_TW
dc.description.abstractWell-performed magnetoresistance (MR) is a significant aim to develop cutting-edge spintronic devices for high-performance read heads of hard disk drives (HDDs), magnetoresistive random access memories (MRAM), magnetic sensors, and magnetic field-effect transistors. The representative device, magnetic tunnel junction (MTJ), possesses a room-temperature MR ratio about 600% in application using a high-quality (100)MgO tunnel barrier.
Here, extraordinary MR effects and related phenomena in multiple top-gate-controlled potentials spin-valve built on a lateral two-dimensional (2D) Dirac material, graphene or topological insulator (TI), as a transport channel are studied in this dissertation. The giant MR value up to 104 % in the double-gate graphene-based spin-valve is approximately 15 times higher than the MR of traditional MgO-based MTJs. The result is produced by particular current suppression in the antiparallel (AP) configuration. Such huge AP-mode resistance is due to the modulation of resonance and non-resonance effect in an appropriate energy window. Furthermore, the MR performance is further enhanced by the periodic gate potentials in the graphene-based spin-valve. It is found that the MR value can easily exceed 109 % at room temperature in the 10-cell gate spin-valves, which is quite amazing performance. When the period number decreases to 3, the MR value still retains up to 105 % at room temperature and up to about 1010 % at extremely low temperature in experiments. Through the investigation, the ultra-giant MR is induced by appropriate allowed bands and forbidden bands in the energy window. Needless to say, the MR value is very ordinary (under 100%) while the device setup keeps away from the circumstances described above (resonance point).
For TI-based spin-valves, the device reveals interest MR oscillations near the Fermi level of low-energy approximation. The results exhibit that only a few robust bands of high-MR properties are available in practical applications. A MR value higher than 1000% at room temperature is showed in a TI thin-film (TITF) spin valve with a 3-cell segment gate potential. The results reveal a very large resistance difference between the parallel and antiparallel configurations. The MR effect is strongly influenced by the thin-film thickness, the gate potential, the gate size, and the distribution. The research investigates the ultra-giant MR effect and its reason that could be applied to high-efficiency spintronics devices, including novel storage memories, read-head sensors, and spin transistors.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:19Z (GMT). No. of bitstreams: 1
U0001-2701202117234500.pdf: 20132442 bytes, checksum: 4644d303f1c3d9ebe7a290d556217825 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要....................................................................................................................................i
Abstract...........................................................................................................................iii
Contents............................................................................................................................v
List of Figures................................................................................................................vii
List of Symbols..............................................................................................................xiv
List of Abbreviations....................................................................................................xvi
Chapter 1 Introduction.............................................................................................1
1.1 Background and research purposes.............................................................1
1.2 Literature review.........................................................................................5
1.3 Chapter outlines...........................................................................................9
Chapter 2 Spin Properties and Basic Theory in 2D Dirac Materials..................11
2.1 Magnetoresistance and applications..........................................................11
2.1.1 Principle of spin-valve..........................................................................11
2.1.2 Magnetoresistance................................................................................13
2.1.3 Applications of magnetoresistance.......................................................16
2.2 Theory model of 2D Dirac materials.........................................................17
2.2.1 2D Dirac Hamiltonian operator............................................................17
2.2.2 Energy eigenvalues and eigensolutions of Dirac Hamiltonian.............19
2.2.3 Propagation in finite multi-potential systems.......................................24
2.2.4 Band structure in infinite periodic potential systems...........................25
2.2.5 Spin-polarized current in 2D Dirac materials.......................................27
2.2.6 Low-temperature conductance in 2D Dirac materials..........................30
Chapter 3 Magnetoresistance in Graphene Nanoribbon Spin-Valves................31
3.1 Magnetoresistance in single and double gate potential systems...............41
3.2 Magnetoresistance in periodic gate potential systems...............................58
3.3 Band structure and transmission spectra in periodic gate potential systems........................................................................................................64
Chapter 4 Magnetoresistance in Topological Insulator Spin-Valves..................73
4.1 Spin conductance in double gate potential systems..................................78
4.2 Spin conductance in periodic gate potential systems................................86
4.3 Magnetoresistance and current feature in topological insulator spin-valves...................................................................................................98
Chapter 5 Conclusions...........................................................................................106
5.1 Summary.................................................................................................106
5.2 Suggestion for future research.................................................................108
References.................................................................109
dc.language.isoen
dc.title二維狄拉克材料自旋閥之自旋傳輸特性zh_TW
dc.titleSpin Transport in Two-dimensional Dirac Material Spin-valvesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳德和(Te-Ho Wu),鄭勝文(Sheng-Wen Cheng),黃智賢(Jih-Shang Hwang),白奇峰(Chi-Feng Pai),李昭德(Chao-Te Lee)
dc.subject.keyword自旋電子學,自旋閥,石墨烯奈米帶,拓樸絕緣體,磁阻,自旋極化電流,zh_TW
dc.subject.keywordspintronics,spin-valve device,graphene nanoribbon,topological insulator,magnetoresistance,spin-polarized current,en
dc.relation.page124
dc.identifier.doi10.6342/NTU202100210
dc.rights.note未授權
dc.date.accepted2021-01-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-2701202117234500.pdf
  未授權公開取用
19.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved