Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21286
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 鄭光成 | |
dc.contributor.author | Ho Ki Kwong | en |
dc.contributor.author | 鄺浩淇 | zh_TW |
dc.date.accessioned | 2021-06-08T03:30:16Z | - |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | 國家實驗研究院科技政策研究與資訊中心、科技產業資訊室 (2017)。 (Sep 25, 2017)
中華穀類食品工業技術研究所、國內保健營養食品產值暨產業概況分析 (2017)。 Adetuyi, F. O., & Ibrahim, T. A. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Nigerian Food Journal. 2017, 32(2), 128-137. Alexopoulos, A., Plessas, S., Kourkoutas, Y., Stefanis, C., Vavias, S., Voidarou, C., Mantzourani, I., Bezirtzoglou, E. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. International journal of food microbiology. 2017, 246, 5-11. Aloisi, I., Parrotta, L., Ruiz, K.B., Landi, C., Bini, L., Cai, G., Biondi, S. and Duca, S.D. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts. Frontiers in plant science. 2016, 7, 656. Aluko, R. E., & Monu, E. Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science. 2003, 68(4), 1254-1258. Asao, M., & Watanabe, K. Functional and bioactive properties of quinoa and amaranth. Food science and technology research. 2010, 16(2), 163-168. Ayed, L., & Hamdi, M. Culture conditions of tannase production by Lactobacillus plantarum.' Biotechnology Letters. 2002, 24(21), 1763-1765. Bastidas, E. G., Roura, R., Rizzolo, D. A. D., Massanés, T., & Gomis, R. Quinoa (Chenopodium quinoa Willd), from Nutritional Value to Potential Health Benefits: An Integrative Review. Journal of Nutrition & Food Sciences. 2016, 6(3) Bedoya-Perales, N., Pumi, G., Mujica, A., Talamini, E., & Domingos Padula, A. Quinoa Expansion in Peru and Its Implications for Land Use Management. Sustainability. 2018, 10(2), 532. Benzie, I.F. & Choi, S.W. Antioxidants in food: content, measurement, significance, action, cautions, caveats, and research needs. Advances in food and nutrition research. 2014, 71, 1-53. Benzie, I.F. & Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': the FRAP assay. Anal Biochem. 1996, 239(1), 70-76. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008, 76(5), 965-977. Brend, Y., Galili, L., Badani, H., Hovav, R., Galili, S. Total phenolic content and antioxidant activity of red and yellow quinoa (Chenopodium quinoa Willd.) seeds as affected by baking and cooking conditions. Food and Nutrition Sciences, 2012. 3(08), 1150. Campanella, D., Rizzello, C.G., Fasciano, C., Gambacorta, G., Pinto, D., Marzani, B., Scarano, N., Angelis, M.D., Gobbetti, M. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food microbiology. 2017, 65, 25-35. Carciochi, R. A., Galván-D’Alessandro, L., Vandendriessche, P., & Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant foods for human nutrition. 2016, 71, 361–367. Casarotti, S. N., Carneiro, B. M., & Penna, A. L. B. Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity. Journal of dairy science. 2014, 97(10), 6027-6035. Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C., Chekir, L., Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of food processing and preservation. 2017, 41(5), 1-12. Chai, T.-T., Law, Y.-C., Wong, F.-C., & Kim, S.-K. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: a review. Marine drugs. 2017, 15(2), 42. Chung, Y. C., Chiang, B. H., Wei, J. H., Wang, C. K., Chen, P. C. & Hsu, C. K. Effects of blanching, drying and extraction processes on the antioxidant activity of yam (Dioscorea alata), International journal of food science & technology. 2008, 43(5), 859–864. Curiel, J. A., Pinto, D., Marzani, B., Filannino, P., Farris, G. A., Gobbetti, M., & Rizzello, C. G. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microbial cell factories. 2015, 14(1), 67. Dallagnol, A. M., Pescuma, M., De Valdez, G. F., Rollán, G. Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity. Applied microbiology and biotechnology. 2013, 97(7), 3129-3140. Dewanto, V., Wu, X., & Liu, R. H. Processed sweet corn has higher antioxidant activity. Journal of Agricultural and food Chemistry, 2002, 50(17), 4959-4964. Di Cagno, R., Filannino, P., Vincentini, O., Lanera, A., Cavoski, I., Gobbetti, M. Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree. Food microbiology. 2016, 59, 176-89. Dong, J.W.; Cai, L.; Xing, Y.; Yu, J.; Ding, Z.T. Re-evaluation of ABTS*+ Assay for Total Antioxidant Capacity of Natural Products. Natural product communications. 2015, 10(12), 2169-72. Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., Merillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of agricultural and food chemistry. 2009, 57(5), 1768-1774. Esatbeyoglu, T., Wagner, A. E., Schini‐Kerth, V. B., Rimbach, G. Betanin—A food colorant with biological activity. Molecular nutrition & food research. 2015, 59(1), 36-47. Esteban-Torres, M., Landete, J. M., Reveron, I., Santamaria, L., de las Rivas, B., & Munoz, R. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters. Applied and Environmental Microbiology. 2015, 81(9), 3235-3242. Faulds, C. B. What can feruloyl esterases do for us? Phytochemistry Reviews. 2010, 9(1), 121-132. Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., Coimbra, J. S. D. R. Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition. 2017, 57(8), 1618–1630 Gasparova, Z.; Stara, V.; Stolc, S. Effect of antioxidants on functional recovery after in vitro-induced ischemia and long-term potentiation recorded in the pyramidal layer of the CA1 area of rat hippocampus. Journal General Physiology and Biophysics. 2014, 33(1), 43-52. Gawlik-Dziki, U., Swieca, M., Sulkowski, M., Dziki, D., Baraniak, B., Czyz, J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts–in vitro study. Food and Chemical Toxicology. 2013, 57, 154-160. Ghosh, S., Chakraborty, R., & Raychaudhuri, U. Determination of pH-dependent antioxidant activity of palm (Borassus flabellifer) polyphenol compounds by photoluminol and DPPH methods: a comparison of redox reaction sensitivity. 3 Biotech. 2015, 5(5), 633–640. Gonzalez Martín, M. I., Wells Moncada, G., Fischer, S., & Escuredo, O. Chemical characteristics and mineral compositeon of quinoa by near-infrared spectroscopy. Journal of the Science of Food and Agriculture. 2014, 94(5), 876-881. Graf, B.L., Poulev, A., Kuhn, P., Grace, M.H., Lila, M.A., Raskin, I. Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food chemistry. 2014, 163, 178-185. Graf, B.L.; Rojas-Silva, P.; Rojo, L.E.; Delatorre-Herrera, J.; Baldeón, M.E.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Comprehensive reviews in food science and food safety. 2015, 14(4), 431-445. Grzegorczyk-Karolak, I.; Wysokinska, H.; Olas, B. Studies on the antioxidant properties of extracts from the roots and shoots of two Scutellaria species in human blood plasma. Acta Biochimica Polonica. 2015, 62(2), 253-8. Hemalatha, P., Bomzan, D. P., Rao, B. S., & Sreerama, Y. N. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on a-amylase and a-glucosidase activities. Food chemistry. 2016, 199, 330-338. Holker, U., & Lenz, J. Solid-state fermentation—are there any biotechnological advantages? Current opinion in microbiology. 2005, 8(3), 301-306. Holker, U., Hofer, M., & Lenz, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied microbiology and biotechnology. 2004, 64(2), 175-186. Higashikawa, F.; Noda, M.; Awaya, T.; Nomura, K.; Oku, H.; Sugiyama, M. Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition. 2010, 26(4), 367-374 Hirose, Y., Fujita, T., Ishii, T., & Ueno, N. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry. 2010, 119(4), 1300-1306. Hong, Y.H.; Huang, Y.L.; Liu, Y.C.; Tsai, P.J. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. BioMed research international. 2016, 7368797. Hu, Y., Zhang, J., Zou, L., Fu, C., Li, P., & Zhao, G. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. International journal of biological macromolecules. 2017, 99, 622-629. Hur, S. J., Lee, S. Y., Kim, Y. C., Choi, I., & Kim, G. B. Effect of fermentation on the antioxidant activity in plant-based foods. Food chemistry. 2014, 160, 346-356 Hutkins, R. W., & Nannen, N. L. pH Homeostasis in Lactic Acid Bacteria. Journal of Dairy Science. 1993, 76(8), 2354-2356. Ivey, M., Massel, M., & Phister, T. G. Microbial Interactions in Food Fermentations. Annual review of food science and technology. 2013, 4, 141-162. Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J., ... & Kharbatia, N. M. The genome of Chenopodium quinoa. Nature. 2017, 542(7641), 307–312. Jones, M. L., Martoni, C. J., & Prakash, S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. European journal of clinical nutrition. 2012, 66(11), 1234-1241. Khan, M. I., & Giridhar, P. Plant betalains: Chemistry and biochemistry. Phytochemistry. 2015, 117, 267-295. Khlifi, R., Dhaouefi, Z., Maatouk, M., Sassi, A., Boudhiba, N., Ioannou, I., ... & Kilani-Jaziri, S. Heat treatment improves the immunomodulatory and cellular antioxidant behavior of a natural flavanone: Eriodictyol. International immunopharmacology. 2018, 317-324. Krishna, C. Solid-state fermentation systems-an overview. Critical reviews in biotechnology. 2005, 25(1-2), 1-30. Li, S., Li, P., Feng, F., & Luo, L. X. Microbial diversity and their roles in the vinegar fermentation process. Applied microbiology and biotechnology. 2015, 99(12), 4997–5024. Lorusso, A., Coda, R., Montemurro, M., & Rizzello, C. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods. 2018, 7(4), 51. Ludena Urquizo, F. E., García Torres, S. M., Tolonen, T., Jaakkola, M., Pena‐Niebuhr, M. G., von Wright, A., ... & Plumed‐Ferrer, C. Development of a fermented quinoa-based beverage. Food science & nutrition. 2017, 5, 602–608. Mantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 2019, 8(1), 4. Mantzourani, I., Terpou, A., Alexopoulos, A., Kimbaris, A., Bezirtzoglou, E., Koutinas, A. A., & Plessas, S. Production of a Potentially Synbiotic Pomegranate Beverage by Fermentation with Lactobacillus plantarum ATCC 14917 Adsorbed on a Prebiotic Carrier. Applied biochemistry and biotechnology. 2019, 1-12. Matejcekova, Z., Liptakova, D., Spodniakova, S., & Valik, L. Characterization of the growth of Lactobacillus plantarum in milk in dependence on temperature. Acta Chimica Slovaca, 2016, 9(2), 104—108. Michlmayr, H., & Kneifel, W. B-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS microbiology letters. 2014, 352(1), 1–10. Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International journal of food microbiology. 2018. MoBhammer, M. R., Stintzing, F. C., & Carle, R. Cactus pear fruits (Opuntia spp.): A review of processing technologies and current uses. Journal of the Professional Association for Cactus Development, 2006, 8, 1-25. Nascimento, A. C., Mota, C., Coelho, I., Gueifao, S., Santos, M., Matos, A. S., ... & Castanheira, I. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food chemistry. 2014, 148, 420-426. Natarajan, K., & Rajendran, A. Effect of fermentation parameters on extra cellular tannase production by Lactobacillus plantarum MTCC 1407. Journal of Chemistry. 2009, 6(4), 979-984. Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource technology, 2000, 72(3), 219-226. Nongonierma, A. B., Le Maux, S., Dubrulle, C., Barre, C., & FitzGerald, R. J. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of cereal science, 2015 65, 112-118. Pihlanto, A., Mattila, P., Makinen, S., & Pajari, A. M. Bioactivities of alternative protein sources and their potential health benefits. Food & function. 2017, 8(10), 3443-3458. Prasanna, P. H. P., Grandison, A. S., & Charalampopoulos, D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Research International, 2014, 55, 247-262. Rahimi, P.; Abedimanesh, S.; Mesbah Namin, S.A.; Ostadrahimi, A. Betalains, the nature-inspired pigments, in health and diseases. Critical reviews in food science and nutrition. 2018, 1-30. Ramasamy, C. Potential natural antioxidants: adjuvant effect of green tea polyphenols in periodontal infections. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2015, 15(3), 141-152. Randazzo, C.L.; Pino, A.; Ricciardi, L.; Romano, C.; Comito, D.; Arena, E.; Saitta, S.; Caggia C. Probiotic supplementation in systemic nickel allergy syndrome patients: study of its effects on lactic acid bacteria population and on clinical symptoms. Journal of applied microbiology. 2015, 118(1), 202-211 Rizzello, C. G. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International journal of food microbiology. 2017, 241, 252-261. Rocchetti, G., Lucini, L., Chiodelli, G., Giuberti, G., Montesano, D., Masoero, F., & Trevisan, M. Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Research International. 2017, 100(2), 69-77. Rodriguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gomez-Cordoves, C., ... & Munoz, R. Food phenolics and lactic acid bacteria. International journal of food microbiology. 2009, 132(2-3), 79-90. Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & function. 2015, 6(3), 679-693. Scarpa, E. S., Emanuelli, M., Frati, A., Pozzi, V., Antonini, E., Diamantini, G., ... & Ninfali, P. Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells. Food & function. 2016, 7(12), 4772-4780. Shahidi, F., & Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods. 2013, 2, 570-581. Shimamura, T., Sumikura, Y., Yamazaki, T., Tada, A., Kashiwagi, T., Ishikawa, H., ... & Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study -. Analytical Sciences. 2014, 30(7), 717-21. Song, H., Chu, Q., Xu, D., Xu, Y., & Zheng, X. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice. J Agric Journal of agricultural and food chemistry. 2016, 13, 64(1), 236-44. Subramaniyam, R., & Vimala, R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Phytocosmetics and Natural Ingredients. 2012, 3(3), 480-486. Sugai-Guerios, M. H., Balmant, W., Furigo, A., Krieger, N., & Mitchell, D. A. Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems. Filaments in Bioprocesses. 2015, 171-221. Taira, J., Tsuchida, E., Katoh, M. C., Uehara, M., & Ogi, T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food chemistry. 2015, 166, 531-6. Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry. 2015, 166, 380-388. Tang, Y., & Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Molecular nutrition & food research. 2017, 61(7), 1600767. Thakur, K.; Tomar, S.K.; De, S. Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol. 2016, 9(4), 441-51. Thirugnanasambandham, K., Sivakumar, V., & Maran, J. P. Modeling and investigation of submerged fermentation process to produce extracellular polysaccharide using Lactobacillus confuses. Carbohydrate polymers. 2014, 114, 43-47. Trujillo, J., Chirino, Y. I., Molina-Jijon, E., Anderica-Romero, A. C., Tapia, E., & Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox biology. 2013, 1, 48-56. Tsai, P. J., Sheu, C. H., Wu, P. H., & Sun, Y. F. Thermal and pH stability of betacyanin pigment of Djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. Journal of agricultural and food chemistry. 2009, 58(2), 1020-1025. Tsai, Y. T., Cheng, P. C., & Pan, T. M. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Applied microbiology and biotechnology. 2014, 98(1), 1-10. Vega‐Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture. 2010, 90(15), 2541-2547. Vilcacundo, R., Barrio, D., Carpio, C., Garcia-Ruiz, A., Rúales, J., Hernández-Ledesma, B., & Carrillo, W. Digestibility of Quinoa (Chenopodium quinoa Willd.) Protein Concentrate and Its Potential to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model. Plant Foods for Human Nutrition, 2017, 72(3), 294-300. Wijayanti, E. D., Setiawan, N. C. E., & Christi, J. P. Effect of Lactic Acid Fermentation on Total Phenolic Content and Antioxidant Activity of Fig Fruit Juice (Ficus carica). Health Science International Conference (HSIC 2017). 2017, 2, 282-289. Wu, G., Morris, C. F., & Murphy, K. M. Evaluation of Texture Differences among Varieties of Cooked Quinoa. Journal of food science. 2014, 79(11), S2337-2345. Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., ... & Li, H. Overview of Antioxidant Peptides Derived from Marine Resources: The Sources, Characteristic, Purification, and Evaluation Methods. Applied biochemistry and biotechnology. 2015, 176(7), 1815-1833. Xu, L. N., Guo, S., & Zhang, S. Effects of solid-state fermentation with three higher fungi on the total phenol contents and antioxidant properties of diverse cereal grains. FEMS microbiology letters, 2018, 365(16), fny163. Yang, G., Jiang, Y., Yang, W., Du, F., Yao, Y., Shi, C., & Wang, C. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide, Microbial cell factories. 2015, 14(1), 202. Yao, Y., Shi, Z., & Ren, G. Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.). International journal of molecular sciences. 2014, 23, 15(10), 19307-19318. Yao, Y., Yang, X., Shi, Z., & Ren, G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. Journal of food science. 2014, 79(5), H1018-23. Yin, Y., Wang, J., Yang, S., Feng, J., Jia, F., & Zhang, C. Protein degradation in wheat sourdough fermentation with Lactobacillus plantarum M616. Interdisciplinary Sciences: Computational Life Sciences. 2015, 7(2), 205-210. Yoon, J. W., Ahn, S. I., Jhoo, J. W., & Kim, G. Y. Antioxidant Activity of Yogurt Fermented at Low Temperature and Its Anti-inflammatory Effect on DSS-induced Colitis in Mice. Food Science of Animal Resources. 2019, 39(1), 162–176. Zajsek, K., Gorsek, A., & Kolar, M. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food chemistry. 2013, 139(1-4), 970-977. Zannini, E., Jeske, S., Lynch, K. M., & Arendt, E. K. Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. International journal of food microbiology. 2018, 268, 19-26. Zevallos, V. F., Herencia, L. I., Chang, F., Donnelly, S., Ellis, H. J., & Ciclitira, P. J. Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. The American Journal of Gastroenterology. 2014, 109(2), 270-278. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21286 | - |
dc.description.abstract | 臺灣藜 (Chenopodium formosanum Koidz.),又名“紅藜”、“紅寶石”及“Djulis”,屬於臺灣原生種的植物,栽種於屏東、臺東與花蓮等地區 (臺東縣農會、信豐農場) 。臺灣藜是一種含有豐富營養素,維生素和礦物質的穀物,並具有特殊的營養價值,如抗氧化能力等。本研究的目的為透過液態發酵提升臺灣藜當中的抗氧化能力,製作出臺灣藜乳酸飲品。本研究中,臺灣藜會分別接種不同常用於發酵乳製品之益生菌進行發酵,並篩選出能夠產生最高抗氧化能力的益生菌,並透過反應曲面法優化發酵條件,最適化提升抗氧化能力,最後再針對各營養成分及活性成分進行分析。實驗結果顯示,利用DPPH自由基清除能力作臺灣藜的預處理及發酵時間的選擇,選擇90oC預處理10分鐘和24小時的發酵時間。後續在此條件下,以十株不同的乳酸菌進行發酵,並透過DPPH、ABTS+自由基清除能力和酚類化合物的含量作篩選條件,選出具有最好抗氧化能力的菌株Lactobacillus plantarum BCRC 11697,此菌株於DPPH及ABTS+自由基清除能力的結果均有顯著提升,DPPH從72.6%上升至93.2%;ABTS+從64.2%上升至76.9%。接著使用反應曲面法 (Response surface methodology) 針對發酵條件進行優化,以提高抗氧化能力。所選擇的發酵優化條件為初始pH值、轉速及發酵溫度。經最適化後,最佳的初始pH值、轉速及發酵溫度條件分別為pH 5.55、104 rpm和24.4oC。以RSM優化後的條件進行發酵,結果顯示,不論是DPPH和ABTS+自由基清除能力都有顯著的增加,發酵前分別為DPPH IC50 1.11 mg/ml;ABTS IC50 3.4 mg/ml,發酵後則為DPPH IC50 0.33 mg/ml;ABTS IC50 2.65 mg/ml,分別提升28%及26%。總酚含量含量顯著的提升了53% (p < 0.05)。以臺灣藜的蛋白質萃取液進行抗氧化能力的分析,亦發現不論是DPPH及ABTS都有顯著的提升 (p < 0.05)。 | zh_TW |
dc.description.abstract | Chenopodium formosanum Koidz. also known as ‘Djulis’, is a plant native to Taiwan. Djulis has special nutritional value, because they are great sources of vitamins, minerals, complete protein and also bioactive compounds like antioxidants. Therefore, the purpose of this study is to enhance the antioxidant capacity of Djulis through the lactic acid fermentation to produce a nutraceutical food. In this study, different probiotics commonly used in fermented dairy products will inoculate in matrix for fermentation, and the probiotic with highest antioxidant activity will be select as the further experiment use, and then increase the antioxidant activity by using the response surface method. Result shows that, based on the ability of DPPH radical scavenging, the pretreatment of 90°C for 10 minutes and 24 hours of the fermentation time has been selected. The optimum probiotics - Lactobacillus plantarum BCRC 11697 was screened by phenolic compound, DPPH (from 72.6% to 93.2%) and ABTS (from 64.2% to 76.9%) free radical scavenging ability compared with different lactic acid bacteria. Then, response surface methodology used as to optimize the fermentation process to improve the antioxidant capacity. The optimal initial pH, rpm and fermentation temperature of improving antioxidant activity were pH 5.55, 104 rpm and 24.4°C. No matter phenolic compound, DPPH and ABTS free radical scavenging ability also showed significantly increase during fermentation process (p < 0.05), the IC50 of the DPPH and ABTS free radical scavenging ability were 0.25 and 2.65 mg/ml, DPPH and ABTS were increased 28% and 25%, respectively. Djulis protein also showed increasing of antioxidant activity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:30:16Z (GMT). No. of bitstreams: 1 ntu-108-R06642011-1.pdf: 4563012 bytes, checksum: 199168356cab98dfab1796ff10fc29c1 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄
謝誌 I 摘要 II Abstract III 目錄 IV 圖目錄 VIII List of Figures X 表目錄 XII List of Tables XIV 一、前言 1 二、文獻回顧 2 2.1藜麥介紹 2 2.1.1藜麥營養成分 4 2.1.2藜麥中的抗營養因子 6 2.1.3藜麥的研究 6 2.1.4臺灣藜 6 2.2藜麥抗氧化成分 7 2.2.1 胜肽 7 2.2.2酚類物質 8 2.2.3甜菜紅素 10 2.3發酵 10 2.3.1發酵介紹 10 2.3.2發酵應用 10 2.3.3固態發酵 11 2.3.4 液態發酵 11 2.4乳酸菌 12 2.4.1乳酸菌介紹 12 2.4.2乳酸菌的益處及應用 13 2.5反應曲面法 14 2.5.1反應曲面法介紹 14 2.5.2反應曲面設計 14 2.5.3反應曲面最佳化 14 2.6抗氧化物 16 2.6.1抗氧化成分介紹 16 2.6.2抗氧化之活性分析方法 16 三、研究目標與假設 17 3.1研究目的 17 3.2實驗架構 17 四、材料與方法 20 4.1化學藥品及材料 20 4.2實驗菌株 20 4.3乳酸菌活化與吸光值及菌數檢測 20 4.3.1益生菌的活化 20 4.3.2製作凍管 21 4.3.3乳酸菌OD-菌數標準曲線製作 21 4.4樣品製備與發酵條件 21 4.4.1臺灣藜樣品製備 21 4.4.2滅菌條件選擇 21 4.4.3臺灣藜發酵時間選擇 22 4.4.4臺灣藜發酵 22 4.5乳酸菌之篩選 22 4.6 RSM條件 22 4.7發酵液之生菌數、pH值檢測 22 4.7.1 pH測定 22 4.7.2發酵液之菌數測定 23 4.8乳酸菌生長曲線 23 4.8.1乳酸菌活化 23 4.8.2臺灣藜前處理 23 4.8.3發酵 23 4.8.4生菌數 24 4.8.5 pH值測定 24 4.8.6發酵液冷凍乾燥 24 4.9主成份分析 25 4.9.1水分 25 4.9.2粗脂肪 25 4.9.3粗蛋白 25 4.9.4粗灰分 26 4.9.5碳水化合物 26 4.10活性成份分析 26 4.10.1總酚含量分析 26 4.10.2抗氧化能力分析 27 4.10.3蛋白質組成分析 28 4.11統計分析 31 五、結果與討論 32 5.1 熱處理條件 32 5.2 發酵時間 35 5.3 乳酸菌篩選 38 5.4 生長曲線 43 5.5 反應曲面法 45 5.5.1 反應曲面法-起始pH 45 5.5.2 反應曲面法-rpm 49 5.5.3 反應曲面法-發酵溫度 52 5.5.4 反應曲面法結果 55 5.5.5 最佳發酵條件 60 5.6 活性成份分析 61 5.7主成份分析 62 六、結論 68 七、參考文獻 69 八、附錄 XVI | |
dc.language.iso | zh-TW | |
dc.title | 利用乳酸菌發酵提升臺灣藜的抗氧化能力 | zh_TW |
dc.title | Enhanced Antioxidant Activity of Chenopodium formosanum Koidz. Using Lactic Acid Bacteria Fermentation | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈湯龍,徐慶琳,謝昌衛,張祐維,陳與國 | |
dc.subject.keyword | 臺灣藜,乳酸發酵,抗氧化,反應曲面法,胜?,酚類物質, | zh_TW |
dc.subject.keyword | Chenopodium formosanum Koidz.,lactic acid fermentation,antioxidant,response surface methodology,total phenolic content,peptides, | en |
dc.relation.page | 155 | |
dc.identifier.doi | 10.6342/NTU201903272 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 4.46 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.