Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李昆達
dc.contributor.authorMao-Yang Hoen
dc.contributor.author何茂暘zh_TW
dc.date.accessioned2021-06-08T03:30:06Z-
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation1、 World Health Organization. Obesity and overweight fact sheet; 2016. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
2、 A. Treerutkuarkul, K. Gruber. Prevention is better than treatment. Bulletin of the World Health Organization. 2015; 93:594–595
3、 P. de Cock. In Sweeteners and sugar alternatives in food technology 2012; pp:215–241
4、 Z. Tahergorabi, M. Khazaei, M. Moodi, E. Chamani. From obesity to cancer: a review on proposed mechanisms. Cell Biochemistry and Function. 2016; 34:533–545
5、 T. Oku, S. Nakumura. Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults. Journal of Nutritional Science and Vitaminology. 2007; 53:13–20
6、T. Richard, F. Bacher. Hydrogenation of tartaric acid esters to erythritol. 1951; US2571967A
7、 J. Sloan, B. Hofreiter, C. Mchltretter, I. Wolff. Hydrogenolysis of dialdehyde starch to erythritol and ethylene glycol. 1957; US2783283A
8、 M. Pepino. Metabolic effects of non-nutritive sweeteners. Physiology and Behavior. 2015; 152:450–455
9、 S. Ghosh, S. Lakshminarayan. A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition. 2012; 63:372–379
10、 J. Nicaud. Yarrowia lipolytica. Yeast. 2012; 29:409–418
11、 Y. Kourkoutas, A. Bekatorou, I. Banat, R. Marchant, A. Koutinas. Immobilization technologies and supporting materials suitablein alcohol beverages production: a review. Food Microbiol. 2004; 21:377–97
12、K. Nabe, N. Izuo, S. Yamada, I. Chibata. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Applied and Environmental Microbiology. 1979; 38:1056–1060
13、 M. Wada, J. Kato, I. Chibata. Continuous production of ethanol using immobilized growing yeast cells. Applied Microbiology and Biotechnology. 1980; 10:275-287
14、 M. Ortiz, J. Bleckwedel, R. Raya, F. Mozzi. Biotechnological and in situ food production of polyols by lactic acid bacteria. Applied Microbiology and Biotechnology. 2013; 97:4713–4726
15、 A. Miron´czuk, A. Biegalska, K. Zugaj, D. Rzechonek, A. Dobrowolski. A Role of a newly identified isomerase from Yarrowia lipolytica in erythritol catabolism. Frontiers in Microbiology. 2018; 9:1122
16、W. Rymowicz, A. Rywin´ska, M. Marcinkiewicz. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters. 2009; 31:377-380
17、O. Hoist, E. Sven-Olof, B. Mattiasson. Oxygenation of immobilized ceils using hydrogen-peroxide; a model study of Gluconobacter oxydans converting glycerol to dihydroxyacetone. European journal of applied microbiology and biotechnology. 1982; 14:64
18、 P. Verbelen, D. De Schutter, F. Delvaux, K. Verstrepen, F. Delvaux. Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters.2006; 28:1515–1525
19、 K. Regnat, R. Mach, A. Mach-Aigner. Erythritol as sweetener— wherefrom and whereto? Applied Microbiology and Biotechnology. 2018; 102:587-595
20、 A. Lamy. Ueber einige Bestandtheile des Protococcus vulgaris. Journal f¨ur Praktische Chemie. 1852; 57 :21–28
21、 C. Tyler, L. Kopit, C. Doyle, A. Yu, J. Hugenholtz, M. Marco. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F. Journal of Applied Microbiology. 2016; 120:1336–1345
22、 D. Rzechonek, A. Dobrowolski, W. Rymowicz, A. Mirończuk. Recent advances in biological production of erythritol. Critical Reviews in Biotechnology. 2018; 38 :620–633
23、 Y. Kobayashi, H. Iwata, D. Mizushima, J. Ogihara, T. Kasumi. Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Letters in Applied Microbiology. 2015; 60:475–480
24、 Y. Ryu, C. Park, J. Park, S-Y Kim, J-H Seo. Optimization of erythritol production by Candida magnoliae in fed-batch culture. Journal of Industrial Microbiology and Biotechnology. 2000; 25:100–103
25、 Y. Kobayashi , J. Yoshida , H. Iwata, Y. Koyama, J. Kato, J. Ogihara, T. Kasumi. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. Journal of Bioscience and Bioengineering. 2013; 115:645–650
26、J-K Lee, B-S Koo, S-Y Kim. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Applied and Environmental Microbiology. 2002; 68:4534–4538
27、 L. Silva, M. Coelho, P. Amaral, P. Fickers. A novel osmotic pressure strategy to improve erythritol production by Yarrowia lipolytica from glycerol. Bioprocess and Biosystems Engineering. 2018; 41:1883–1886
28、 D. Rzechonek, A. Day, J. Quinn, A. Mirończuk. Influence of ylHog1 MAPK kinase on Yarrowia lipolytica stress response and erythritol production. Scientific Reports. 2018; 8:14735
29、 F. Carly, M. Vandermies, S. Telek, S. Steels, S. Thomas, J. Nicaud, P. Fickers. Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metabolic Engineering. 2017; 42:19–24
30、 D. Rzechonek, C. Neuvéglise, H. Devillers, W. Rymowicz, A. Mirończuk. EUF1 – a newly identified gene involved in erythritol utilization in Yarrowia lipolytica. Scientific Reports. 2017; 7:12507
31、 F. Carly, S. Steels, S. Telek, M. Vandermies, J. Nicaud, P. Fickers. Identification and characterization of EYD1, encoding an erythritol dehydrogenase in Yarrowia lipolytica and its application to bioconvert erythritol into erythrulose. Bioresource Technology. 2018; 247:963–969
32、 F. Carly, H. Gamboa-Melendez, M. Vandermies, C. Damblon, J. Nicaud, P. Fickers. Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica. Applied Microbiology and Biotechnology. 2017; 101:6587–6596
33、 A. Miron ́czuk, M. Rakicka, A. Biegalska, W. Rymowicz, A. Dobrowolski. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresource Technology. 2015; 198:445–455
34、 A. Miron´czuk, J. Furgała, M. Rakicka, W. Rymowicz. Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. Journal of Industrial Microbiology and Biotechnology. 2014; 41:57–64
35、 B. Carpentier, O. Cerf. Biofilms and their consequences, with particular reference to hygiene in the food industry. Journal of Applied Bacteriology. 1993; 75:499–511
36、 H. Nguyen, M. Kim. An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology.2017; 26:157–163
37、 C. Yong, Q. Liu, T. Zhou, B. Li, S. Yao, A. Li, J. Wu, H. Ying. Ethanol production by repeated batch and continuous fermentations by Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. Journal of Microbiology and Biotechnology. 2013; 23: 511-517
38、 Q. Lin, W. Donghui, W. Jianlong. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon. Bioresource Technology. 2010; 101:5229-5234
39、X. Bai, Z.F. Ye, Y.F. Li, L.C. Zhou, L.Q. Yang. Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms. Process Biochemistry. 2010; 45: 60-66
40、 Industry Research Co. Erythritol Industry 2019 Global Market Growth, Trends, Revenue, Share and Demands Research Report. 2019; Available from: https://www.marketwatch.com/press-release/erythritol-industry-2019-global-market-growth-trends-revenue-share-and-demands-research-report-2019-05-10
41、 Yeastern Biotech Co., Ltd. YLEX Yeast Expression Kit. 2013; Available from: http://si.secda.info/yb_md/?page_id=1390
42、 M. Veiga-Da-Cunha, H. Santos, E. Van Schaftingen. Pathway and Regulation of Erythritol Formation in Leuconostoc oenos. Journal of Bacteriology. 1993; 175:3941–3948
43、M. Grembecka. Sugar alcohols-their role in the modern world of sweeteners: a review. European Food Research and Technology. 2015; 241:1−14
44、 M. Jeya, K.M. Lee, M. Tiwari, J.S. Kim, P. Gunasekaran, S.Y. Kim, I.W. Kim, J.K. Lee. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensisand scale-up of erythritol fermentation to industrial level. Applied Microbiology and Biotechnology. 2009; 83:225–231
45、 E.S. Koh, T.H. Lee, D.Y. Lee, H.J. Kim, Y.W. Ryu, J.H. Seo. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnology Letters. 2003; 25:2103–2105
46、 J. Burscha¨pers, D. Schustolla, K. Schu¨gerl, H. Ro¨per, JC. de Troostembergh. Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis. Part I. Batch and fed-batch operation in stirred tank. Process Biochemistry. 2002; 38:497–506
47、 H. Ishizuka, K. Wako, T. Kasumi, T. Sasaki. Breeding of a mutant of Aureobasidium sp. with high erythritol production. Journal of Fermentation and Bioengineering. 1989; 68:310–314
48、 J.K. Lee, S.J. Ha, S.Y. Kim, D.K. Oh. Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. Journal of Industrial Microbiology and Biotechnology. 2001; 26:248–252
49、 J. Guo, J. Li, Y. Chen, X. Guo, D. Xiao. Improving erythritol production of Aureobasidium pullulans from xylose by mutagenesis and medium optimization. Applied Biochemistry and Biotechnology. 2016; 180:717–727
50、 D.G. Burke, P.D. Cotter, R.P. Ross, C. Hill. Microbial production of bacteriocins for use in foods. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals. 2013; 353-384
51、 N. Money. Fungi and Biotechnology. The Fungi. 2016; 401-424
52、 Y. Dharmadi, A. Murarka, R. Gonzalez. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnology & Bioengineering. 2006; 94:821–9
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21278-
dc.description.abstract本研究於不同生物反應器中進行以 Yarrowia lipolytica Po1g 將甘油轉換成丁 四醇策略之研究。過去之研究中,並沒有比較過不同生物反應器策略,而根據過 去文獻所使用之醱酵槽策略, 本研究提出培養基置換(growth medium replacement, GMR) 與鹽類外添加(growth medium salt adding, GMS) 兩種搖瓶培 養策略,先將Y. lipolytica 接種於適合菌體累積之growth medium (GM) 培養基中 進行生菌數累積,當菌體累積至定常期時,再將菌體置入適合丁四醇轉換之 Erythritol Synthesis Medium (ESM) 培養基,或是以鹽類添加之方式將環境滲透壓 提高,以進行丁四醇之轉換。上述兩種培養策略分別能在搖瓶培養96 小時後累 積8.19、7.61 g/L 之丁四醇。然而,當直接以ESM 培養基進行Y. lipolytica 培養 時,雖然生菌數較上述兩種策略低,但所能產生之丁四醇含量到達14.56 g/L,仍 較上述兩種策略為高。本研究也以海藻酸鈣包埋法將Y. lipolytica 固定化後進行 丁四醇連續轉換。當以固定化膠粒於搖瓶中進行丁四醇轉換時,雖然能夠成功轉 換出丁四醇,但固定化之膠粒結構可能會在振盪培養的過程中被損壞,使固定化 膠粒再次利用之效能大幅降低。而若將固定化膠粒填充於管柱型生物反應器中之 醱酵反應,推測因為溶氧不足使固定化膠粒無法進行丁四醇轉換。本研究最後探 討接種量對醱酵槽批次饋料培養Y. lipolytica 進行丁四醇轉換時之影響。結果發 現,當接種量從0.1 % 提升至10 % 時,可以提高生菌數之累積速度,也提升Y. lipolytica 的丁四醇含量,使菌體在第324 小時之丁四醇累積量從58.61 g/L 提升 33.61% 至78.31 g/L,而丁四醇之產率也從0.18 g/L·h 提升至0.24 g/L·h。而此一 提升有可能是起因於種菌培養的GM 培養基成份所造成。而10 % 接種量之批次 饋料培養能在收槽時(第552 小時) 將丁四醇含量累積至119.40 g/L。因此,醱 酵槽批次饋料培養仍是比較好的丁四醇轉換策略。zh_TW
dc.description.abstractIn this study, we study the ability of Yarrowia lipolytica Po1g for erythritol conversion from glycerol by different kinds of bioreactors and strategies. There was no studies about different bioreactor strategies before, and based on previous fermentation research, two flask culture strategies, growth medium replacement (GMR) and growth medium salt adding (GMS), are used in this study. At first, Y. lipolytica is inoculated in growth medium (GM), which is beneficial for yeast growth, to accumulate yeast cells. When yeast cells enter stationary phase, transfer Y. lipolytica cells into Erythritol Synthesis Medium (ESM), which is suitable for Y. lipolytica to produce erythritol, or raise the osmotic pressure by adding extra salt to make Y. lipolytica start the conversion of erythritol. The production of erythriol reached 8.19, 7.61 g/L separately after 96 hours culture by the two strategies above. However, if culture Y. lipolytica in ESM medium directly, the production of erythritol reached 14.56 g/L was higher than the production of the two strategies. Yeast immobilization entrapped in calcium alginate for the conduction of continuous fermentation is also studied. Though it’s executable for the Y. lipolytica immobilized gels to produce erythritol, the production rate decreased drastically after reusing. It may be because of the destruction of gels structure during the shaking culture. Also, the conversion of erythritol by filling immobilized gels into column bioreactor cannot be detected. Without efficient oxygen for erythritol conversion may be the main reason. The effect of inoculum amount to erythritol production in Y. lipolytica fed-batch culture was discussed in this study. The result showed that when the inoculum amount was elevated from 0.1% to 10%, it would not only promote the growth rate of Y. lipolytica but also improve the erythritol production, which the concentration of erythritol increased 33.61% from 58.61 g/L to 78.31 g/L andthe erythritol production rate also increased from 0.18 g/L·h to 0.24 g/L·h. This increment may be due to the element from inoculum medium, GM medium. And the erythritol amount reached 119.40 g/L after 552 hours cultivation in 10 % inoculum fedbatch culture. Thus, fermentation bioreactor fed-batch culture was still the better strategies for erythriol conversion.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:06Z (GMT). No. of bitstreams: 1
ntu-108-R06b22052-1.pdf: 1703985 bytes, checksum: 31780cf4c5f743ff4d65fc3737f6d64b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents壹、前言1
1.1 丁四醇 1
1.1.1 丁四醇之重要性與簡介 1
1.1.2 丁四醇生理功能與用途 2
1.2 以Yarrowia lipolytica 進行丁四醇生產 2
1.3 丁四醇生產之培養策略 4
1.4 固定化系統 5
1.5 研究目的 6
1.6 研究架構 7
貳、材料與方法 8
2.1 菌株來源 8
2.2 培養基組成 8
2.2.1 YPD 培養基 8
2.2.2 ESM 培養基 8
2.2.3 GM 培養基 9
2.3 搖瓶培養策略 9
2.3.1 鹽類添加 9
2.3.2 培養基置換 10
2.4 海藻酸鈣之菌體固定化 10
2.5 Hinton 氏三角瓶懸浮菌體振盪培養 11
2.6 Hinton 氏三角瓶固定化膠粒搖瓶轉換 11
2.7 5L 醱酵槽培養 11
2.8 分析方法 12
2.8.1 高效液相層析儀進行丁四醇與甘油之含量分析 12
2.8.2 生菌數測定 12
2.8.3 醱酵參數計算 12
參、結果與討論 14
3.1 Yarrowia lipolytica 懸浮細胞搖瓶培養策略探討 14
3.2 固定化菌體搖瓶培養 16
3.3 搖瓶中固定化菌體轉換之再利用 17
3.4 固定化菌體管柱培養 18
3.5 醱酵槽批次饋料培養探討 19
3.5.1 以0.1%接種量進行醱酵槽批次饋料培養 19
3.5.2 培養體積對蒸散與含量影響之修正 20
3.5.3 10%接種量之醱酵槽批次饋料培養 21
肆、結論與未來展望 23
伍、圖表 26
陸、參考資料 35
柒、附錄 41
dc.language.isozh-TW
dc.title以 Yarrowia lipolytica 從甘油進行丁四醇轉換生產之策略zh_TW
dc.titleStrategies of erythritol conversion from glycerol by
Yarrowia lipolytica
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳定峰,楊健志,劉?德
dc.subject.keyword丁四醇,生產,固定化,產油酵母菌,zh_TW
dc.subject.keyworderythritol,production,immobilization,Yarrowia lipolytica,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201903577
dc.rights.note未授權
dc.date.accepted2019-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved