請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21273
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張淑媛(Sui-Yuan Chang) | |
dc.contributor.author | Ming-Hua Ho | en |
dc.contributor.author | 何明樺 | zh_TW |
dc.date.accessioned | 2021-06-08T03:30:00Z | - |
dc.date.copyright | 2019-08-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | 1. in Respiratory Tract Infections - Antibiotic Prescribing: Prescribing of Antibiotics for Self-Limiting Respiratory Tract Infections in Adults and Children in Primary Care. 2008: London.
2. Causes of Death. 2019; Available from: https://ourworldindata.org/causes-of-death?fbclid=IwAR35CDUA8djvSoGUb3cTW1Z9MN_XyUw0pI_y9q2zEd9MwVXO593y03FxInI. 3. WHO. Available from: https://www.who.int/. 4. Taiwan CDC. 5. Fowlkes, A., et al., Viruses Associated With Acute Respiratory Infections and Influenza-like Illness Among Outpatients From the Influenza Incidence Surveillance Project, 2010-2011. Journal of Infectious Diseases, 2014. 209(11): p. 1715-1725. 6. Allander, T., et al., Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A, 2005. 102(36): p. 12891-6. 7. Lee, J.I., et al., Detection of human bocavirus in children hospitalized because of acute gastroenteritis. Journal of Infectious Diseases, 2007. 196(7): p. 994-997. 8. Cotmore, S.F., et al., The family Parvoviridae. Arch Virol, 2014. 159(5): p. 1239-47. 9. Qiu, J., M. Soderlund-Venermo, and N.S. Young, Human Parvoviruses. Clin Microbiol Rev, 2017. 30(1): p. 43-113. 10. Bastien, N., et al., Human Bocavirus infection, Canada. Emerg Infect Dis, 2006. 12(5): p. 848-50. 11. Tang, M.B., et al., Molecular Detection of Human Bocavirus 1 and 2 in Children with Acute Gastroenteritis in Taiwan. Southeast Asian J Trop Med Public Health, 2015. 46(6): p. 1005-12. 12. Regamey, N., et al., Isolation of human bocavirus from Swiss infants with respiratory infections. Pediatr Infect Dis J, 2007. 26(2): p. 177-9. 13. Kesebir, D., et al., Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis, 2006. 194(9): p. 1276-82. 14. Chung, J.Y., et al., Bocavirus infection in hospitalized children, South Korea. Emerging Infectious Diseases, 2006. 12(8): p. 1254-1256. 15. Guido, M., et al., Human bocavirus: Current knowledge and future challenges. World J Gastroenterol, 2016. 22(39): p. 8684-8697. 16. Chuang, C.Y., et al., Human bocavirus as an important cause of respiratory tract infection in Taiwanese children. Journal of Microbiology Immunology and Infection, 2011. 44(5): p. 323-327. 17. van den Hoogen, B.G., et al., A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med, 2001. 7(6): p. 719-24. 18. Kahn, J.S., Epidemiology of human metapneumovirus. Clin Microbiol Rev, 2006. 19(3): p. 546-57. 19. Panda, S., et al., Human metapneumovirus: review of an important respiratory pathogen. Int J Infect Dis, 2014. 25: p. 45-52. 20. van den Hoogen, B.G., et al., Analysis of the genomic sequence of a human metapneumovirus. Virology, 2002. 295(1): p. 119-32. 21. Agrawal, A.S., et al., Genetic variability of attachment (G) and Fusion (F) protein genes of human metapneumovirus strains circulating during 2006-2009 in Kolkata, Eastern India. Virol J, 2011. 8: p. 67. 22. Banerjee, S., et al., Detection and genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in India. J Med Virol, 2011. 83(10): p. 1799-810. 23. Deffrasnes, C., et al., Identification and evaluation of a highly effective fusion inhibitor for human metapneumovirus. Antimicrob Agents Chemother, 2008. 52(1): p. 279-87. 24. Hodinka, R.L., Respiratory RNA Viruses. Microbiol Spectr, 2016. 4(4). 25. Cheng, M.F., et al., Human metapneumovirus as a causative agent of lower respiratory tract infection in four patients: The first report of human metapneumovirus infection confirmed by RNA sequences in Taiwan. Scandinavian Journal of Infectious Diseases, 2006. 38(5): p. 392-396. 26. Chan, P.C., et al., Detection of human metapneumovirus in hospitalized children with acute respiratory tract infection using real-time RT-PCR in a hospital in northern Taiwan. J Formos Med Assoc, 2007. 106(1): p. 16-24. 27. Tu, C.C., et al., An outbreak of human metapneumovirus infection in hospitalized psychiatric adult patients in Taiwan. Scandinavian Journal of Infectious Diseases, 2009. 41(5): p. 363-367. 28. Borchers, A.T., et al., Respiratory syncytial virus--a comprehensive review. Clin Rev Allergy Immunol, 2013. 45(3): p. 331-79. 29. Piedimonte, G. and M.K. Perez, Respiratory syncytial virus infection and bronchiolitis. Pediatr Rev, 2014. 35(12): p. 519-30. 30. Vandini, S., C. Biagi, and M. Lanari, Respiratory Syncytial Virus: The Influence of Serotype and Genotype Variability on Clinical Course of Infection. Int J Mol Sci, 2017. 18(8). 31. Melero, J.A., V. Mas, and J.S. McLellan, Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development. Vaccine, 2017. 35(3): p. 461-468. 32. Thongpan, I., et al., Respiratory syncytial virus genotypes NA1, ON1, and BA9 are prevalent in Thailand, 2012-2015. PeerJ, 2017. 5: p. e3970. 33. Lee, J.T., et al., Epidemiology of respiratory syncytial virus infection in northern Taiwan, 2001-2005 -- seasonality, clinical characteristics, and disease burden. J Microbiol Immunol Infect, 2007. 40(4): p. 293-301. 34. Chi, H., et al., Persistence and continuous evolution of the human respiratory syncytial virus in northern Taiwan for two decades. Sci Rep, 2019. 9(1): p. 4704. 35. Horimoto, T. and Y. Kawaoka, Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol, 2005. 3(8): p. 591-600. 36. Steinhauer, D.A. and J.J. Skehel, Genetics of influenza viruses. Annu Rev Genet, 2002. 36: p. 305-32. 37. O'Neill, R.E., J. Talon, and P. Palese, The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J, 1998. 17(1): p. 288-96. 38. Nakatsu, S., et al., Influenza C and D Viruses Package Eight Organized Ribonucleoprotein Complexes. J Virol, 2018. 92(6). 39. Kesinger, E., et al., Influenza D virus M2 protein exhibits ion channel activity in Xenopus laevis oocytes. PLoS One, 2018. 13(6): p. e0199227. 40. Paules, C. and K. Subbarao, Influenza. Lancet, 2017. 390(10095): p. 697-708. 41. van de Sandt, C.E., J.H. Kreijtz, and G.F. Rimmelzwaan, Evasion of influenza A viruses from innate and adaptive immune responses. Viruses, 2012. 4(9): p. 1438-76. 42. Indumathi, C.P., et al., Isolation & molecular characterization of human parainfluenza virus in Chennai, India. Indian J Med Res, 2015. 142(5): p. 583-90. 43. Henrickson, K.J., Parainfluenza viruses. Clin Microbiol Rev, 2003. 16(2): p. 242-64. 44. Russell, E. and M.G. Ison, Parainfluenza Virus in the Hospitalized Adult. Clinical Infectious Diseases, 2017. 65(9): p. 1570-1576. 45. Pan, Y., et al., Human parainfluenza virus infection in severe acute respiratory infection cases in Beijing, 2014-2016: A molecular epidemiological study. Influenza Other Respir Viruses, 2017. 11(6): p. 564-568. 46. Yang, T.Y., et al., Clinical manifestations of parainfluenza infection in children. J Microbiol Immunol Infect, 2003. 36(4): p. 270-4. 47. Lu, X. and D.D. Erdman, Molecular typing of human adenoviruses by PCR and sequencing of a partial region of the hexon gene. Archives of Virology, 2006. 151(8): p. 1587-1602. 48. Henquell, C., et al., Fatal adenovirus infection in a neonate and transmission to health-care workers. Journal of Clinical Virology, 2009. 45(4): p. 345-348. 49. Condezo, G.N., et al., Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k. Journal of Virology, 2015. 89(18): p. 9653-9664. 50. Robinson, C.M., et al., Molecular evolution of human adenoviruses. Sci Rep, 2013. 3: p. 1812. 51. Lynch, J.P., 3rd and A.E. Kajon, Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin Respir Crit Care Med, 2016. 37(4): p. 586-602. 52. Li, L., B.D. Santarsiero, and M. Bouvier, Structure of the Adenovirus Type 4 (Species E) E3-19K/HLA-A2 Complex Reveals Species-Specific Features in MHC Class I Recognition. J Immunol, 2016. 197(4): p. 1399-407. 53. Qiu, F.Z., et al., Adenovirus associated with acute diarrhea: a case-control study. Bmc Infectious Diseases, 2018. 18. 54. Ghebremedhin, B., Human adenovirus: Viral pathogen with increasing importance. Eur J Microbiol Immunol (Bp), 2014. 4(1): p. 26-33. 55. Heim, A., et al., Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol, 2003. 70(2): p. 228-39. 56. Wang, Y.F., et al., Molecular Epidemiology and Clinical Manifestations of Adenovirus Respiratory Infections in Taiwanese Children. Medicine (Baltimore), 2016. 95(18): p. e3577. 57. Chen, H.L., et al., Respiratory adenoviral infections in children: A study of hospitalized cases in southern Taiwan in 2001-2002. Journal of Tropical Pediatrics, 2004. 50(5): p. 279-284. 58. Chang, S.Y., et al., A community-derived outbreak of adenovirus type 3 in children in Taiwan between 2004 and 2005. Journal of Medical Virology, 2008. 80(1): p. 102-112. 59. Lin, M.R., et al., Clinical and molecular features of adenovirus type 2, 3, and 7 infections in children in an outbreak in Taiwan, 2011. Clinical Microbiology and Infection, 2017. 23(2): p. 110-116. 60. Sotnikov, D.V., A.V. Zherdev, and B.B. Dzantiev, Mathematical Model of Serodiagnostic Immunochromatographic Assay. Analytical Chemistry, 2017. 89(8): p. 4419-4427. 61. Bin, Y., et al., Development of an immunochromatographic strip test for rapid detection of citrus yellow vein clearing virus. Archives of Virology, 2018. 163(2): p. 349-357. 62. Zhao, K., et al., Development of a lateral flow immunochromatographic assay for the rapid diagnosis of Orf virus infections. Journal of Virological Methods, 2016. 236: p. 10-17. 63. Gan, S.D. and K.R. Patel, Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. Journal of Investigative Dermatology, 2013. 133(9): p. E10-E12. 64. Wozniak-Kosek, A., B. Kempinska-Miroslawska, and G. Hoser, Detection of the influenza virus yesterday and now. Acta Biochim Pol, 2014. 61(3): p. 465-70. 65. Lee, C.K., et al., Evaluation of Sofia fluorescent immunoassay analyzer for influenza A/B virus. Journal of Clinical Virology, 2012. 55(3): p. 239-243. 66. Lewandrowski, K., et al., Detection of Influenza A and B Viruses With the Sofia Analyzer A Novel, Rapid Immunofluorescence-Based In Vitro Diagnostic Device. American Journal of Clinical Pathology, 2013. 139(5): p. 684-689. 67. Tajadini, M., M. Panjehpour, and S.H. Javanmard, Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv Biomed Res, 2014. 3: p. 85. 68. Elnifro, E.M., et al., Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev, 2000. 13(4): p. 559-70. 69. Dabisch-Ruthe, M., et al., Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay. BMC Infect Dis, 2012. 12: p. 163. 70. Reijans, M., et al., RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J Clin Microbiol, 2008. 46(4): p. 1232-40. 71. Liao, R.S., et al., Comparison of viral isolation and multiplex real-time reverse transcription-PCR for confirmation of respiratory syncytial virus and influenza virus detection by antigen immunoassays. J Clin Microbiol, 2009. 47(3): p. 527-32. 72. Liu, G.S., et al., Detection of six common human paramyxoviruses in patients with acute febrile respiratory symptoms using a novel multiplex real-time RT-PCR assay. J Med Virol, 2019. 91(4): p. 564-569. 73. Kurskaya, O., et al., Viral etiology of acute respiratory infections in hospitalized children in Novosibirsk City, Russia (2013 - 2017). PLoS One, 2018. 13(9): p. e0200117. 74. Liu, P., et al., Epidemiology of Respiratory Pathogens in Children with Lower Respiratory Tract Infections in Shanghai, China, from 2013 to 2015. Jpn J Infect Dis, 2018. 71(1): p. 39-44. 75. Rehder, K.J., et al., Detection of Multiple Respiratory Viruses Associated With Mortality and Severity of Illness in Children. Pediatr Crit Care Med, 2015. 16(7): p. e201-6. 76. Robert, S., et al., Diagnostic performance of multiplex PCR on pulmonary samples versus nasopharyngeal aspirates in community-acquired severe lower respiratory tract infections. J Clin Virol, 2018. 108: p. 1-5. 77. Yoshii, Y., et al., Identification of pathogens by comprehensive real-time PCR versus conventional methods in community-acquired pneumonia in Japanese adults. Infect Dis (Lond), 2016. 48(11-12): p. 782-8. 78. Weekly emergency department visits for ILI. 2019 Taiwan CDC]; Available from: https://nidss.cdc.gov.tw/ch/RODS_6.aspx. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21273 | - |
dc.description.abstract | 呼吸道感染為全球前十大死因之一,而常見的呼吸道感染以病毒所引發的類流感(Influenza-like illness,ILI)為主;其病原體除了季節性A型流感病毒(Influenza A viruses)、季節性B型流感病毒(Influenza B viruses)、副流感病毒(Parainfluenza viruses,PIV)、呼吸道融合病毒(Respiratory syncytial virus,RSV)、腺病毒(Adenovirus,ADV),亦包含新興病毒,如:人類間質肺炎病毒(Human Metapneumovirus,hMPV)及人類博卡病毒(Human Bocavirus,HBoV)。統計台大醫院2018年1 月至2019年4月呼吸道檢體之各項檢驗結果,包含流感快篩、流感病毒PCR及病毒培養,發現大部分檢體結果呈現陰性,無法確認其致病因,因此須仰賴分生檢驗技術進行更精確之檢測。本研究之目的即為發展可同步檢驗多種呼吸道病毒之即時分子診斷平台。本篇研究目的為利用TaqMan® 探針發展具專一性之即時多重螢光定量平台,可同步檢驗八種呼吸道病毒:人類博卡病毒、人類間質肺炎病毒、A型與B型呼吸道融合病毒、第一型至第三型副流感病毒及腺病毒。建立平台之首要步驟為針對各病毒之保守序列設計專一性引子及探針。首先至NCBI基因資料庫中收集已發表之呼吸道病毒序列,所選取序列需涵蓋不同年份、區域與基因型別,再經由序列分析軟體MEGA6進行序列分析找出保守序列後設計具專一性的引子與探針。接著建立實驗所需的對照組,將實驗室已保存之呼吸道病毒及臨床呼吸道檢體,利用前述設計之引子夾出病毒片段,嵌入pCRII-TOPO載體製備成病毒標準品,而後將其定序後所得之序列以Blast (Basic local alignment search tool)確認病毒序列、繪製親緣關係樹 (Phylogenetic Tree),以確認標準品之病毒基因型。同時,為確認各病毒引子的專一性、排除引子對於它種病毒具交互反應(Cross-reactivity),將不同的引子與病毒標準品配對後進行PCR,其結果證明本研究之引子皆具有高度專一性、未觀察到假性結合(False binding)之現象。接著利用SYBR green與TaqMan® 探針進行Simplex Real-time PCR實驗條件測試,利用病毒標準品設立標準曲線後,確認引子與探針之實驗條件,並測試平台之偵測範圍,其實驗結果顯示除了人類博卡病毒及第一、二型副流感病毒之偵測範圍為104至108 copies/5 μL,其餘皆從103至108 copies/5 μL。此外,同時利用已知病毒核酸及臨床檢體進行測試,證明Simplex Real-time PCR偵測結果與已知結果相符。在確認上述條件皆完備後即進行Multiplex Real-time PCR的測試,其結果顯示Multiplex Real-time PCR偵測範圍皆與Simplex Real-time PCR一致;在多重即時聚合酶鏈鎖反應中也未觀察到同組內三種病毒間之交互反應,顯示本研究多重即時聚合酶鏈鎖反應具有高度專一性。最後,我們收集2019年1月至2019年4月間,114支台大病毒室未確定感染源之肺炎患者的臨床檢體,經由本平台之多重聚合酶鏈鎖反應檢驗後,有32支檢體為陽性,分別為: A型呼吸道融合病毒3支,B型呼吸道融合病毒1支,人類間質肺炎病毒4支,第一型副流感病毒2支,第二型副流感病毒3支,第三型副流感病毒5支,人類博卡病毒2支,腺病毒11支,及第二型副流感病毒與腺病毒共同感染1支,檢驗陽性率為28%,顯示本平台之多重聚合酶鏈鎖反應具有高度專一性及敏感度,可應用於臨床檢驗及疫情防治。 | zh_TW |
dc.description.abstract | Respiratory infection was one of the top 10 causes that led to deaths worldwide, and the Influenza-like illness (ILI) which arose from virus infection was the major cause of respiratory infection. The ILI pathogens include influenza A virus, influenza B virus, parainfluenza virus (PIV), respiratory syncytial virus (RSV), adenovirus (ADV) and some emerging viruses, such as human metapneumovirus (hMPV) and human bocavirus (HBoV). After analyzing the diagnosis results of respiratory specimens from National Taiwan University Hospital between January 2018 and April 2019, including influenza rapid screening, influenza virus PCR and virus culture, we found that most of the diagnosis was negative and could not confirm the pathogens responsible for respiratory infections. Therefore, it is necessary to apply the molecular technology for more accurate detection of virus pathogen. The study is aimed to develop the multiplex real-time PCR to detect eight common respiratory viruses simultaneously, including influenza A viruses, influenza B viruses, PIV, RSV, ADV and 2 emerging viruses, HMPV and HBoV. The first step was to collect the sequences of respiratory viruses from NCBI deposited at different years, regions and genotypes, then to design specific primers and probes for the conserved sequences for each virus. Next, we constructed the control plasmids by cloning the respective virus PCR products into the pCRII-TOPO vectors. The Blast (Basic local alignment search tool) and phylogenetic analysis was then conducted to confirm the viral sequences and genotypes. The specificity of each virus primers was confirmed by PCR. The SYBR® Green and TaqMan® probes were used in the simplex real-time PCR to determine the experimental conditions and the detection ranges for each virus. The detection range for BoV, PIV-1 and PIV-2 was 104 to 108 copies/5μL, the others were 103 to 108 copies/5μL. The performance of the PCR was confirmed using clinical samples with confirmed virus identity. After establishment of simplex real-time PCR for each virus, 3 sets of multiplex real-time PCR were designed. The respective viral plasmids were used to test the experimental conditions for each set of multiplex real-time PCR. The Ct values of standard reagents were compared between simplex real-time PCR and multiplex real-time PCR. The detection range in multiplex real-time PCR was the same as the detection range in the simplex real-time PCR. The interaction between the 3 viruses in the same group was not observed, indicating that multiplex real-time PCR in this study is highly specific. Then, the respiratory sepcimens or cultured viruses were used to compare the Ct values of simplex and multiplex real-time PCR. The results showed that the Ct values of multiplex real-time PCR were similar to the Ct values of the simplex real-time PCR. Finally, we used the platform to examine the potential pathogens of 114 respiratory specimens from pneumonia cases which were collected from January 2019 to April 2019 in National Taiwan University Hospital and the pathogens were not defined. Among the 114 original specimens, 32 (28%) were found positive for at least one virus. RSV-A, RSV-B, HMPV, PIV-1, PIV-2, PIV-3, BoV and ADV were detected in 3, 1 , 4 , 2, 3 , 5, 2 and 11 of the specimens, respectively. Dual infection accounted for 3.13% (1/32) of all positive specimens. The study results indicate that the designed platform could facilitate the identification of respiratory pathogens, which could not be identified using the conventional virus culture. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:30:00Z (GMT). No. of bitstreams: 1 ntu-108-R06424026-1.pdf: 9512173 bytes, checksum: ec4d86ffaf86e13d2bde23dcf2246b26 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 前言 1 1-1呼吸道感染 1 1-1-1呼吸道感染臨床現況及流行病學 1 1-1-2類流感簡介 1 1-1-3呼吸道病毒簡介 2 1-2病毒檢驗 6 1-2-1 病毒培養 6 1-2-2 病毒抗原偵測 7 1-2-3 分生檢驗技術 8 第二章 實驗動機與目的 11 第三章 實驗方法與材料 12 3-1實驗材料 12 3-1-1 細胞 12 3-1-2 臨床病毒株 12 3-1-3 培養基與試劑 12 3-1-4商業試劑套組 12 3-1-6 細菌培養系統(Bacteria culture system) 13 3-2實驗方法 13 3-2-1 細胞株培養 13 3-2-2 病毒培養與放大(Virus amplification) 14 3-2-3 細胞感染(Infection) 15 3-2-4 血球吸附試驗(Hemadsorption test,HAd test) 15 3-2-5 螢光抗體染色法(Fluorescent antibody test,FA test)16 3-2-6 病毒RNA萃取(Viral RNA extraction) 16 3-2-7 病毒RNA反轉錄反應(Reverse transcription reaction)17 3-2-8 病毒聚合酶鏈鎖反應(Polymerase chain reaction)17 3-2-10 膠體純化(DNA gel purififcation) 20 3-2-11 將目標產物嵌入pCR™Ⅱ-TOPO® TA載體 21 3-2-12 細菌轉型作用(Transformation) 21 3-2-13 藍白篩選(Blue-White Screening) 21 3-2-14 小量細菌質體萃取(Mini plasmid extraction) 21 3-2-15 大量細菌質體萃取(Maxi plasmid extraction) 22 3-2-16非專一性即時聚合酶鏈鎖反應(SYBR® Green real-time PCR) 23 3-2-17專一性即時聚合酶鏈鎖反應(TaqMan® Probe real-time PCR) 23 3-2-18多重螢光之專一性即時聚合酶鏈鎖反應(TaqMan® Probe multiplex real-time PCR ) 24 第四章 實驗結果 26 4-1 病毒對照組之建立 26 4-1-1 利用螢光抗體染色法進行病毒型別確認 26 4-1-2 建立各病毒之對照組 27 4-2 病毒引子之特異性(Specificity)分析 28 4-2-1 人類博卡病毒引子之特異性分析 28 4-2-2 腺病毒引子之特異性分析 29 4-2-3 第一型副流感病毒引子之特異性分析 29 4-2-4 第二型副流感病毒引子之特異性分析 29 4-2-5 第三型副流感病毒引子之特異性分析 29 4-2-6 人類間質肺炎病毒引子之特異性分析 30 4-2-7 A型、B型呼吸道融合病毒引子之特異性分析 30 4-3 建立各病毒之單一即時聚合酶鏈鎖反應 30 4-3-1 建立人類博卡病毒之單一即時聚合酶鏈鎖反應 30 4-3-2 建立腺病毒之單一即時聚合酶鏈鎖反應 31 4-3-3 建立第一型副流感病毒之單一即時聚合酶鏈鎖反應 31 4-3-4 建立第二型副流感病毒之單一即時聚合酶鏈鎖反應 32 4-3-5 建立第三型副流感病毒之單一即時聚合酶鏈鎖反應 32 4-3-6 建立人類間質肺炎病毒之單一即時聚合酶鏈鎖反應 33 4-3-7建立A型、B型呼吸道融合病毒之單一即時聚合酶鏈鎖反應 33 4-4 建立病毒之多重即時聚合酶鏈鎖反應平台 34 4-4-1 人類間質肺炎病毒與A型、B型呼吸道融合病毒之多重即時聚合酶鏈鎖反應 35 4-4-2 第一型至第三型副流感病毒之多重即時聚合酶鏈鎖反應 35 4-4-3 人類博卡病毒與腺病毒之多重即時聚合酶連鎖反應 36 4-5 以臨床檢體評估多重即時聚合酶連鎖反應 37 第五章 實驗討論 39 參考資料 89 | |
dc.language.iso | zh-TW | |
dc.title | 非流感呼吸道病毒之多重即時聚合酶鏈鎖反應 | zh_TW |
dc.title | Development of multiplex real-time PCR assays for non-influenza respiratory viruses | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高全良(Chuan-Liang Kao),林靜宜(Ching-Yi Lin) | |
dc.subject.keyword | 呼吸道病毒,多重聚合?鏈鎖反應,即時聚合?連鎖反應,TaqManR 探針,臨床檢體, | zh_TW |
dc.subject.keyword | Respiratory virus,Multiplex,Real-time PCR,TaqManR probe,Original specimens, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU201903741 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 9.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。