Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華
dc.contributor.authorChia-Ching Yuen
dc.contributor.author郁家青zh_TW
dc.date.accessioned2021-06-08T03:29:40Z-
dc.date.copyright2019-08-26
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationAgodi, A., Maugeri, A., Kunzova, S., Sochor, O., Bauerova, H., Kiacova, N., Barchitta, M., & Vinciguerra, M. (2018). Association of dietary patterns with metabolic syndrome: Results from the kardiovize brno 2030 study. Nutrients, 10(7), 898.
Alberti, K., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J.-C., James, W. P. T., Loria, C. M., & Smith Jr, S. C. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 120(16), 1640-1645.
Altomonte, J., Cong, L., Harbaran, S., Richter, A., Xu, J., Meseck, M., & Dong, H. H. (2004). Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. The Journal of Clinical Investigation, 114(10), 1493-1503.
Andaloussi, S. E., Mäger, I., Breakefield, X. O., & Wood, M. J. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12(5), 347.
Bashratyan, R., Sheng, H., Regn, D., Rahman, M. J., & Dai, Y. D. (2013). Insulinoma‐released exosomes activate autoreactive marginal zone‐like B cells that expand endogenously in prediabetic NOD mice. European Journal of Immunology, 43(10), 2588-2597.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813.
Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615-1625.
Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., & Butler, P. C. (2003). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 52(1), 102-110.
Cantaluppi, V., Biancone, L., Figliolini, F., Beltramo, S., Medica, D., Deregibus, M. C., Galimi, F., Romagnoli, R., Salizzoni, M., & Tetta, C. (2012). Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplantation, 21(6), 1305-1320.
Cianciaruso, C., Phelps, E. A., Pasquier, M., Hamelin, R., Demurtas, D., Ahmed, M. A., Piemonti, L., Hirosue, S., Swartz, M. A., & De Palma, M. (2017). Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes, 66(2), 460-473.
Copps, K., & White, M. (2012). Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 55(10), 2565-2582.
Coughlan, M. T., Yap, F. Y., Tong, D. C., Andrikopoulos, S., Gasser, A., Thallas-Bonke, V., Webster, D. E., Miyazaki, J.-i., Kay, T. W., & Slattery, R. M. (2011). Advanced glycation end products are direct modulators of β-cell function. Diabetes, 60(10), 2523-2532.
Dadi, P. K., Vierra, N. C., Ustione, A., Piston, D. W., Colbran, R. J., & Jacobson, D. A. (2014). Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. Journal of Biological Chemistry, 289(18), 12435-12445.
de la Torre Gomez, C., Goreham, R. V., Bech Serra, J. J., Nann, T., & Kussmann, M. (2018). “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Frontiers in Genetics, 9, 92.
Drake, I., Sonestedt, E., Ericson, U., Wallström, P., & Orho-Melander, M. (2018). A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. British Journal of Nutrition, 119(10), 1168-1176.
Esguerra, J. L., & Eliasson, L. (2014). Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Frontiers in Genetics, 5, 209.
Esteves, J. V., Enguita, F. J., & Machado, U. F. (2017). MicroRNAs-mediated regulation of skeletal muscle GLUT4 expression and translocation in insulin resistance. Journal of Diabetes Research, 2017.
Figliolini, F., Cantaluppi, V., De Lena, M., Beltramo, S., Romagnoli, R., Salizzoni, M., Melzi, R., Nano, R., Piemonti, L., & Tetta, C. (2014). Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS One, 9(7), e102521.
Fishman, S. L., Sonmez, H., Basman, C., Singh, V., & Poretsky, L. (2018). The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Molecular Medicine, 24(1), 59.
Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., & Rajewsky, N. (2011). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 40(1), 37-52.
Fung, T. T., Rimm, E. B., Spiegelman, D., Rifai, N., Tofler, G. H., Willett, W. C., & Hu, F. B. (2001). Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. American Journal of Clinical Nutrition, 73(1), 61-67.
Gallo, W., Esguerra, J. L. S., Eliasson, L., & Melander, O. (2018). miR-483-5p associates with obesity and insulin resistance and independently associates with new onset diabetes mellitus and cardiovascular disease. PLoS One, 13(11), e0206974.
Garcia-Contreras, M., Brooks, R., Boccuzzi, L., Robbins, P., & Ricordi, C. (2017). Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. European Review for Medical and Pharmacological Sciences, 21, 2940-2956.
Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., & Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. Journal of American Dietetic Association, 104(8), 1287-1291.
Goldenberg, R., & Punthakee, Z. (2013). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 37, S8-S11.
Guay, C., Menoud, V., Rome, S., & Regazzi, R. (2015). Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Communication and Signaling, 13(1), 17.
Guay, C., & Regazzi, R. (2017). Exosomes as new players in metabolic organ cross‐talk. Diabetes, Obesity and Metabolism, 19, 137-146.
Hagman, D. K., Hays, L. B., Parazzoli, S. D., & Poitout, V. (2005). Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. Journal of Biological Chemistry, 280(37), 32413-32418.
He, Z., Rask-Madsen, C., & King, G. L. (2003). Pathogenesis of diabetic microvascular complications. International Textbook of Diabetes Mellitus.
Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193-208.
HPA. (2018). Health Promotion Administration (HPA)-Diabetes. Retrieved from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359
IDF. (2017). Internaltional diabetes federation (IDF) diabetes atlas - Across the globe. Retrieved from https://diabetesatlas.org/across-the-globe.html
Jitrapakdee, S., Wutthisathapornchai, A., Wallace, J., & MacDonald, M. (2010). Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia, 53(6), 1019-1032.
Jonas, J.-C., Bensellam, M., Duprez, J., Elouil, H., Guiot, Y., & Pascal, S. (2009). Glucose regulation of islet stress responses and β‐cell failure in type 2 diabetes. Diabetes, Obesity and Metabolism, 11, 65-81.
Jud, P., & Sourij, H. (2019). Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Research and Clinical Practice, 148, 54-63.
Kandel, E. S., & Hay, N. (1999). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Experimental Cell Research, 253(1), 210-229.
Kant, A. K. (2004). Dietary patterns and health outcomes. Journal of American Dietetic Association, 104(4), 615-635.
Karaskov, E., Scott, C., Zhang, L., Teodoro, T., Ravazzola, M., & Volchuk, A. (2006). Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology, 147(7), 3398-3407.
Karttunen, T., Risteli, J., Autio–Harmainen, H., & Risteli, L. (1986). Effect of age and diabetes on type IV collagen and laminin in human kidney cortex. Kidney International, 30(4), 586-591.
Kockeritz, L., Doble, B., Patel, S., & Woodgett, J. R. (2006). Glycogen synthase kinase-3-an overview of an over-achieving protein kinase. Current Drug Targets, 7(11), 1377-1388.
Kong, X., Lu, A.-L., Yao, X.-M., Hua, Q., Li, X.-Y., Qin, L., Zhang, H.-M., Meng, G.-X., & Su, Q. (2017). Activation of NLRP3 inflammasome by advanced glycation end products promotes pancreatic islet damage. Oxidative Medicine and Cellular Longevity, 2017.
Kong, X., Wang, G.-D., Ma, M.-Z., Deng, R.-Y., Guo, L.-Q., Zhang, J.-X., Yang, J.-R., & Su, Q. (2015). Sesamin ameliorates advanced glycation end products-induced pancreatic β-cell dysfunction and apoptosis. Nutrients, 7(6), 4689-4704.
Kooptiwut, S., Kebede, M., Zraika, S., Visinoni, S., Aston-Mourney, K., Favaloro, J., Tikellis, C., Thomas, M. C., Forbes, J. M., & Cooper, M. E. (2005). High glucose-induced impairment in insulin secretion is associated with reduction in islet glucokinase in a mouse model of susceptibility to islet dysfunction. Journal of Molecular Endocrinology, 35(1), 39-48.
Lakhter, A. J., & Sims, E. K. (2015). Minireview: emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Molecular Endocrinology, 29(11), 1535-1548.
Lee, H. S., Jeong, J., & Lee, K.-J. (2009). Characterization of vesicles secreted from insulinoma NIT-1 cells. Journal of Proteome Research, 8(6), 2851-2862.
Lee, Y., El Andaloussi, S., & Wood, M. J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 21(R1), R125-R134.
Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., & del Cañizo-Gómez, F. J. (2016). Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes, 7(17), 354.
Mashouri, L., Yousefi, H., Aref, A. R., mohammad Ahadi, A., Molaei, F., & Alahari, S. K. (2019). Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 18(1), 75.
Meier, J., Bhushan, A., Butler, A., Rizza, R., & Butler, P. (2005). Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia, 48(11), 2221-2228.
Mellitus, C. o. t. J. D. S. o. t. D. C. o. D., Seino, Y., Nanjo, K., Tajima, N., Kadowaki, T., Kashiwagi, A., Araki, E., Ito, C., Inagaki, N., & Iwamoto, Y. (2010). Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Journal of Diabetes Investigation, 1(5), 212-228.
Mononen, N., Lyytikäinen, L.-P., Seppälä, I., Mishra, P. P., Juonala, M., Waldenberger, M., Klopp, N., Illig, T., Leiviskä, J., & Loo, B.-M. (2019). Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Scientific Reports, 9(1), 8887.
Nagaraj, R. H., Linetsky, M., & Stitt, A. W. (2012). The pathogenic role of Maillard reaction in the aging eye. Amino Acids, 42(4), 1205-1220.
Narayan, K. V., Gregg, E. W., Fagot-Campagna, A., Engelgau, M. M., & Vinicor, F. (2000). Diabetes—a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Research and Clinical Practice, 50, S77-S84.
Palmisano, G., Jensen, S. S., Le Bihan, M.-C., Laine, J., McGuire, J. N., Pociot, F., & Larsen, M. R. (2012). Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies. Molecular and Cellular Proteomics, 11(8), 230-243.
Papa, S., Bubici, C., Zazzeroni, F., & Franzoso, G. (2009). Mechanisms of liver disease: cross-talk between the NF-κB and JNK pathways. Biological Chemistry, 390(10), 965-976.
Prentki, M., & Matschinsky, F. M. (1987). Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiological Reviews, 67(4), 1185-1248.
Puddu, A., Storace, D., Odetti, P., & Viviani, G. (2010). Advanced glycation end-products affect transcription factors regulating insulin gene expression. Biochemical and Biophysical Research Communications, 395(1), 122-125.
Randle, P., Garland, P., Hales, C., & Newsholme, E. (1963). The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 281(7285), 785-789.
Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., & Ratajczak, M. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5), 847.
Rheinheimer, J., Bauer, A. C., Silveiro, S. P., Estivalet, A. A., Bouças, A. P., Rosa, A. R., Souza, B. M. d., Oliveira, F. S. d., Cruz, L. A., & Brondani, L. A. (2015). Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory. Archives of Endocrinology and Metabolism, 59(2), 161-170.
Robertson, R. P., & Harmon, J. S. (2007). Pancreatic islet β‐cell and oxidative stress: The importance of glutathione peroxidase. FEBS letters, 581(19), 3743-3748.
Sacco, F., Seelig, A., Humphrey, S. J., Krahmer, N., Volta, F., Reggio, A., Marchetti, P., Gerdes, J., & Mann, M. (2019). Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets. Cell Metabolism, 29(6), 1422-1432. e1423.
Salama, A., Fichou, N., Allard, M., Dubreil, L., De Beaurepaire, L., Viel, A., Jégou, D., Bösch, S., & Bach, J.-M. (2014). MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity. PLoS One, 9(9), e106153.
Sarwar, N., Gao, P., Seshasai, S., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, D., Selvin, E., & Stampfer, M. (2010). Emerging Risk Factors Collaboration Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet, 375(9733), 2215-2222.
Schinner, S., Ülgen, F., Papewalis, C., Schott, M., Woelk, A., Vidal-Puig, A., & Scherbaum, W. (2008). Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia, 51(1), 147-154.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671.
Seton-Rogers, S. (2013). Tumour suppressors: FAT loss lets WNT get active. Nature Reviews Cancer, 13(3), 149.
Sheng, H., Hassanali, S., Nugent, C., Wen, L., Hamilton-Williams, E., Dias, P., & Dai, Y. D. (2011). Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice. Journal of Immunology, 187(4), 1591-1600.
Shu, T., Zhu, Y., Wang, H., Lin, Y., Ma, Z., & Han, X. (2011). AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One, 6(4), e18782.
Simons, M., & Raposo, G. (2009). Exosomes–vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21(4), 575-581.
Skyler, J. S., Bakris, G. L., Bonifacio, E., Darsow, T., Eckel, R. H., Groop, L., Groop, P.-H., Handelsman, Y., Insel, R. A., & Mathieu, C. (2017). Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes, 66(2), 241-255.
Sun-Wada, G.-H., Toyomura, T., Murata, Y., Yamamoto, A., Futai, M., & Wada, Y. (2006). The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. Journal of Cell Science, 119(21), 4531-4540.
Taplin, C. E., & Barker, J. M. (2008). Autoantibodies in type 1 diabetes. Autoimmunity, 41(1), 11-18.
Thomou, T., Mori, M. A., Dreyfuss, J. M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T. N., Winnay, J. N., Garcia-Martin, R., & Grinspoon, S. K. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542(7642), 450.
Unger, R. H., & Zhou, Y.-T. (2001). Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes, 50(suppl 1), S118.
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654.
Villarroya-Beltri, C., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., & Mittelbrunn, M. (2013). Analysis of microRNA and protein transfer by exosomes during an immune synapse. Circulating MicroRNAs (pp. 41-51): Springer.
Vouillarmet, J., Maucort-Boulch, D., Michon, P., & Thivolet, C. (2013). Advanced glycation end products assessed by skin autofluorescence: a new marker of diabetic foot ulceration. Diabetes Technology and Therapeutics, 15(7), 601-605.
Wullaert, A., Heyninck, K., & Beyaert, R. (2006). Mechanisms of crosstalk between TNF-induced NF-κB and JNK activation in hepatocytes. Biochemical Pharmacology, 72(9), 1090-1101.
Xu, Y., He, Z., & King, G. L. (2005). Introduction of hyperglycemia and dyslipidemia in the pathogenesis of diabetic vascular complications. Current Diabetes Reports, 5(2), 91-97.
Yamaguchi, N. (2001). Pituitary adenylate cyclase activating polypeptide enhances glucose-evoked insulin secretion in the canine pancreas in vivo. Journal of Oncology Practice, 2(5), 306-316.
Yamamoto, Y., Doi, T., Kato, I., Shinohara, H., Sakurai, S., Yonekura, H., Watanabe, T., Myint, K. M., Harashima, A., & Takeuchi, M. (2005). Receptor for advanced glycation end products is a promising target of diabetic nephropathy. Annals of New York Academy of Sciences, 1043(1), 562-566.
Yan, S. F., Ramasamy, R., Naka, Y., & Schmidt, A. M. (2003). Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circulation Research, 93(12), 1159-1169.
Zhang, Q., Sun, X., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., Wang, Z., Qi, C., & Wang, T. (2018). Maternal chromium restriction induces insulin resistance in adult mice offspring through miRNA. International Journal of Molecular Medicine, 41(3), 1547-1559.
Zhu, Q., Kang, J., Miao, H., Feng, Y., Xiao, L., Hu, Z., Liao, D. F., Huang, Y., Jin, J., & He, S. (2014). Low‐dose cytokine‐induced neutral ceramidase secretion from INS‐1 cells via exosomes and its anti‐apoptotic effect. FEBS journal, 281(12), 2861-2870.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21257-
dc.description.abstract糖尿病(diabetes mellitus)是現今最嚴重的代謝性疾病,其主要成因是胰島素分泌不足或胰島素阻抗,而病人體內的高血糖、高血脂、高糖化終產物(advanced glycation end products, AGEs)所引起的胰島素釋放量下降以及血管功能受損,進而提升其罹患糖尿病併發症之風險。葡萄糖代謝恆定是由多重器官組織共同調控,因此器官間訊息傳遞的重要性可想而知。外泌體(exosomes)是一種直徑約50-200奈米的細胞外囊泡,其透過運輸mRNA、microRNA、蛋白質及核酸來調控細胞間訊息傳遞。文獻指出在糖尿病狀態下外泌體參與了葡萄糖及胰島素的調控。然而,外泌體是否參與在高血糖、高血脂及高AGEs所誘導的胰島beta 細胞功能受損目前仍尚未明瞭。因此本研究欲探討AGEs、高糖、高脂是否透過胰島beta細胞所釋放的外泌體進而調節胰島素釋放量。在細胞實驗中我們首先利用MTT試驗法及胰島素ELISA kit證實AGEs、CML、高糖、棕櫚酸在不影響胰島beta細胞存活率的同時仍會干擾其葡萄糖誘導之胰島素分泌,但不論在有無處理AGEs、CML、高糖、棕櫚酸的情況下,來自胰島beta細胞之外泌體皆顯著影響beta細胞之胰島素釋放量。在動物實驗中我們也發現外源性給予beta細胞釋放之外泌體至小鼠體內會顯著影響其血清胰島素含量。此外我們透過西方墨點法證實外泌體顯著降低磷酸化Akt、CaMKII及GLUT2的表現量及顯著提升GSK3、磷酸化NFB、Cox-2表現量。而通過蛋白質體學及次世代定序相關之生物資訊分析,我們推測外泌體可能是透過FAT1(相對豐富度1.71%)以及miR-1224, -122-5p, -133a-3p, -10b-5p, -423-5p, -409a-3p來影響beta細胞之胰島素釋放。總結而言,本研究前所未有的發現正常生理條件下胰島beta細胞所釋放之外泌體具有調節胰島素分泌之能力,而AGEs、CML、高糖、棕櫚酸在外泌體調節胰島素分泌之過程中並無協同作用。zh_TW
dc.description.abstractDiabetes mellitus (DM) is the most serious metabolic disease around the world, which is mainly caused by insufficient insulin secretion or insulin resistance. In DM patients, the hyperglycemia, hyperlipidemia, and advanced glycation end products (AGEs) can reduce the insulin secretion levels and deteriorate the vascular function, leading to an increasing risk of diabetic complications. Glucose homeostasis is controlled by several organs and tissues, thus, the importance of message transmission between organs and tissues is conceivable. Exosomes are extracellular vesicles (about 50-200 nm in diameter) that regulate intercellular communication by transporting mRNAs, microRNAs, proteins, and nucleic acids. It has been indicated that exosomes are involved in the regulation of glucose homeostasis and insulin secretion in the diabetic status. However, it is still unclear whether exosomes play roles in impaired function of islet beta cells caused by hyperglycemia, hyperlipidemia or AGEs. Therefore, the purpose of this study was to investigate whether AGEs, high glucose, and fatty acid can regulate the insulin release via exosomes derived from islet beta cells. In the in vitro studies, we first confirmed that AGEs, CML, high glucose, and palmitic acid interfered the glucose-stimulated insulin secretion (GSIS) without affecting the cell viability of islet beta cells by using MTT assay and insulin ELISA kit. However, exosomes from islet beta cells significantly affected the GSIS regardless of treating with AGEs, CML, high glucose, and palmitic acid or not. In vivo experiments also showed that exogenously administered exosomes derived from islet beta cells into ICR mice significantly decreased their serum insulin levels. In addition, exosomes significantly reduced the protein expression of phosphorylated Akt, CaMKII and GLUT2, and increased the protein expression of GSK3, phosphorylated NFB, and Cox-2 by using western blot analysis. Through bioinformatics analysis such as protein identification and Next-generation sequencing, we speculated that exosomes may transfer FAT1 (relative abundance: 1.71%) and miR-1224, -122-5p, -133a-3p, -10b-5p, -423-5p, -409a-3p to affect GSIS in beta cells. In summary, this study has unprecedentedly found that exosomes released from islet beta cells under normal physiological conditions can regulate insulin release, whereas AGEs, CML, high glucose, and palmitic acid have no synergistic effect on the process of regulating insulin secretion by exosomes.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:29:40Z (GMT). No. of bitstreams: 1
ntu-108-R06447004-1.pdf: 2010156 bytes, checksum: 2551367248306f7df9b16b921b506ca1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES x
ABBREVIATION SUMMARY xi
Chapter 1 Introduction 1
1.1 Diabetes Mellitus 1
1.1.1 Classification 1
1.1.2 Symptoms, criteria and treatments 2
1.1.3 Diabetic complications 3
1.1.4 Risk factors of diabetic complications 3
1.2 Exosomes 7
1.2.1 Exosome biogenesis 8
1.2.2 Effects of exosomes on islet beta cells 9
1.2.3 Effects of exosomes on the cross-talk between islet beta cells and endothelial cells 11
1.3 Aim 12
Chapter 2 Materials and methods 13
2.1 Cell culture 13
2.1.1 RIN-m5f cell line 13
2.1.2 NIT-1 cell line 13
2.2 Cell viability assay 14
2.3 Estimation of insulin secretion 14
2.4 Exosome-depleted FBS preparation 15
2.5 Exosomes preparation 15
2.6 Western blot analysis 16
2.7 Nanoparticle tracking analysis (NTA) 18
2.8 Animals and treatments 18
2.8.1 Oral glucose tolerance test (OGTT) 18
2.8.2 Determination of serum insulin levels 19
2.8.3 Histological assessments 19
2.9 Protein identification by mass spectrometer 19
2.10 Next-Generation Sequencing (NGS) analysis 20
2.11 Statistical analysis 21
Chapter 3 Results 22
3.1 Effects of diabetic-related factors on the cell viability and insulin secretion levels in RIN- m5f cells 22
3.2 Identification of exosomes derived from RIN-m5f cells 23
3.3 Exosomes derived from untreated beta cells decreased the insulin secretion levels without cytotoxicity in naïve RIN-m5f cells 23
3.4 Effects of NIT-1 cells-derived exosomes on body weight, pancreatic weight, blood glucose levels and serum insulin levels in ICR mice 24
3.5 Exosomes from untreated beta cells affect protein expressions of the insulin-related signaling pathway in naïve RIN-m5f cells 25
3.6 Protein identification of exosomes secreted from untreated RIN-m5f cells 26
3.7 Identification of miRNA profile in untreated RIN-m5f cells-derived exosomes by Next-Generation Sequencing 27
3.8 The prediction of candidate miRNAs that associated with insulin secretion signaling pathway 27
Chapter 4 Discussion 29
Chapter 5 Conclusion 34
Chapter 6 Reference 35
Chapter 7 Figures and tables 41
dc.language.isoen
dc.title胰島β細胞釋放之外泌體對胰島素分泌功能之調節角色zh_TW
dc.titleThe Regulatory Role of Exosomes from Islet Beta Cells
on Insulin Secretion Function
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee姜至剛,許美鈴,楊榮森,邱振源
dc.subject.keyword外泌體,胰島素分泌,訊息傳遞,microRNA,蛋白質體學,次世代定序,zh_TW
dc.subject.keywordexosomes,insulin secretion,message transmission,microRNA,proteomics,Next-Generation Sequencing,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201903448
dc.rights.note未授權
dc.date.accepted2019-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved