請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 苑舉正 | |
| dc.contributor.author | Chi-Her Yang | en |
| dc.contributor.author | 楊濟鶴 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:29:38Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | Balashov, Y. (2011). Persistence. In C. Callender (Ed.), Oxford Handbook of Philosophy of Time, (pp. 13–40). Oxford: Oxford University Press.
Beebee, H. and Macbride, F. (2015). de re Modality, Essentialism, and Lewis’s Humeanism. In B. Loewer and J. Schaffer (Eds.), A Companion to David Lewis,(pp. 220–236). Chichester, West Sussex: Wiley Blackwell. Belardinelli, F. (2005). Quantified Modal Logic and the Ontology of Physical Objects.Ph.D. thesis, Scuola Normale Superiore, Pisa. Blackburn, P., de Rijke, M., and Venema, Y. (2002). Modal Logic. Cambridge: Cambridge University Press. Blackburn, P., van Benthem, J., and Wolter, F. (Eds.) (2007). Handbook of Modal Logic. Amsterdam: Elsevier. Blackburn, S. and Code, A. (1978). The Power of Russell’s Criticism of Frege: ‘On Denoting’ pp. 48–50. Analysis, 38(2), 65–77. Carnap, R. (1988). Meaning and Necessity. Chicago: University of Chicago Press. Chellas, B. (1980). Modal logic. Cambridge: Cambridge University Press. Church, A. (1951). A Formulation of the Logic of Sense and Reference. In P. Henle, H. M. Kallen, and S. K. Langer (Eds.), Structure, Method and Meaning, (pp. 2–24). New York: Liberal Arts Press. Cocchiarella, N. and Freund, M. (2008). Modal Logic. Oxford: Oxford University Press. Cresswell, M. J. and Hughes, G. E. (1996). A New Introduction to Modal Logic. London: Routledge. Dorr, C. (2016). To Be F Is To Be G. Philosophical Perspectives, 30(1), 39–134. Fine, K. (2003). The Problem of Possibilia. In M. Loux and D. Zimmerman (Eds.), Oxford Handbook of Metaphysics, (pp. 161–179). Oxford: Oxford University Press. Fitting, M. (2004). First-Order Intensional Logic. Annals of Pure and Applied Logic, 127, 191–193. Fitting, M. (2015). Intensional Logic. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer 2015 ed. Fitting, M. and Mendelsohn, R. L. (1999). First-Order Modal Logic. Dordrecht: Kluwer. Gabbay, D. M., Shehtman, V. B., and Skvortsov, D. P. (2009). Quantification in Nonclassical Logic. Amsterdam: Elsevier. Gallin, D. (1975). Intensional and Higher-Order Modal Logic. Amsterdam: North Holland. Garson, J. (2001). Quantification in Modal Logic. In D. M. Gabbay and F. Guenthner (Eds.), Handbook of Philosophical Logic, (pp. 267–323). Singapore: Springer. Gibbard, A. (1975). Contingent Identity. Journal of Philosophical Logic, 4(2), 187–222. Hawley, K. (2015). David Lewis on Persistence. In B. Loewer and J. Schaffer (Eds.), A Companion to David Lewis, (pp. 237–249). Chichester, West Sussex: Wiley Blackwell. Klement, K. (2002). Frege and the Logic of Sense and Denotation. London: Routledge. Klement, K. (2010). The Senses of Functions in the Logic of Sense and Denotation. Bulletin of Symbolic Logic, 16(2), 153–188. Klement, K. (2019). Russell-Myhill Paradox. In J. Fieser and B. Dowden (Eds.), The Internet Encyclopedia of Philosophy. ISSN 2161-0002, 2019 ed. Kracht, M. and Kutz, O. (2005). The Semantics of Modal Predicate logic II. Modal Individuals Revisited. In R. Kahle (Ed.), Intensionality, (pp. 60–97). Natick: A K Peters. Kracht, M. and Kutz, O. (2007). Logically Possible Worlds and Counterpart Semantics for Modal logic. In Philosophy of Logic, (pp. 943–996). Amsterdam: North Holland. Kripke, S. (1963). Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16, 83–94. Kripke, S. (1980). Naming and Necessity. Cambridge, MA: Harvard University Press. Kupffer, M. (2010). Counterpart Semantics and the Multiple de re. In G. Imaguire and D. Jacquette (Eds.), Possible Worlds, (pp. 141–169). Munich: Philosophia. Kupffer, M. (2012). Counterpart Semantics for Quantified Modal Logic. ESSLLI 2012 course material. Lewis, D. (1968). Counterpart Theory and Quantified Modal Logic. Journal of Philosophy, 65, 113–126. Lewis, D. (1973). Counterfactuals. Cambridge, MA: Harvard University Press. Lewis, D. (1976). Survival and Identity. In A. O. Rorty (Ed.), The Identities of Persons, (pp. 17–40). Oakland: University of California Press. Lewis, D. (1986). On the Plurality of Worlds. Oxford: Blackwell. Loux, M. J. (Ed.) (1979). The Possible and the Actual. Ithaca: Cornell University Press. Mackie, P. and Jago, M. (2017). Transworld Identity. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2017 ed. Mill, J. S. (1843). A System of Logic. London: John W. Parker. Parsons, D. (2016). Theories of Intensionality. Singapore: Springer. Parsons, T. (2011). The Logic of Sense and Denotation: Extensions and Applications. In C. A. Anderson and M. Zelёny (Eds.), Logic, Meaning, and Computation: Essays in Memory of Alonzo Church, (pp. 507–543). Dordrecht: Kluwer. Plantinga, A. (1974). The Nature of Necessity. Oxford: Oxford University Press. Priest, G. (2008). An Introduction to Non-Classical Logic. Cambridge: Cambridge University Press. Rigoni, A. and Thomason, R. H. (2012). The Logic of Counterpart Theory with Actuality. Journal of Philosophical Logic, 43(1), 1–31. Rosenkrantz, M. (2017). A Reconstruction of Russell’s Gray’s Elegy Argument. Journal for the History of Analytical Philosophy, 6(2), 1–31. Skvortsov, D. P. and Shehtman, V. B. (1993). Maximal Kripke-Type Semantics for Modal and Superintuitionistic Predicate Logics. Annals of Pure and Applied logic, 63(1), 69–101. Stalnaker, R. (1976). Possible Worlds. Nous, 10, 65–75. Walsh, S. (2016). Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic. Journal of Philosophical Logic, 45(3), 277–326. Williamson, T. (2013). Modal Logic as Metaphysics. Oxford: Oxford University Press. Yagisawa, T. (2010). Worlds and Individuals, Possible and Otherwise. Oxford: Oxford University Press. 余永平(2003). 羅素早期的邏輯哲學. 台北: 學富. 王文方(2006). 書評《羅素早期的邏輯哲學》. 東吳哲學學報, 13, 129–160. 王文方(2008). 形上學. 台北: 三⺠. 鄧敦⺠(2016). 自然演繹法系統之比較. 臺大哲學論評, 51, 35–70. 張文琴(2018). 大衛•劉易斯邏輯哲學思想研究. 上海: 上海社會科學院. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21256 | - |
| dc.description.abstract | 我們將古典的命題邏輯擴展到命題模態邏輯,再擴展到量化模態邏輯。我們討論量化模態邏輯的語法與語意。我們展示了樹枝法是很好的工具;無論是用來討論命題邏輯、一階邏輯、命題模態邏輯、量化模態邏輯的各種系統、副本理論的各種系統、後設框架、擴充的後設框架。
我們討論了可能世界的幾種理論(模態實在論、模態實際論、重排主義),以及東西如何存在於可能世界。路易士的模態實在論與副本理論有其優點,可是我們在形上學與邏輯兩方面說明接受個體概念理論的理由。我們討論時間哲學上的三個理論(整存論、分存論、副存論),也討論這三個理論與跨世界等同問題的關係。在邏輯方面,某些情況下,體現個體概念理論的內涵邏輯系統可以表達基於副本理論的邏輯系統表達的事情。除此之外,我們還也試著進一步擴展副本理論為後設框架與擴充的後設框架。 我們回顧了內涵邏輯,說明從弗列格、卡爾納普、丘崎的想法。雖然丘崎的內涵邏輯比菲廷的內涵邏輯來得強大,但是丘崎的系統會遇到一些困難(例如異常的意含函數與羅素-邁希爾悖論)。這表示從量化模態邏輯進展到更高階的內涵邏輯時,仍然有一些議題需要研究。 | zh_TW |
| dc.description.abstract | We extend classical propositional logic to propositional modal logic and quantified modal logic. We discuss the syntax and the semantics of quantified modal logic. The tableau method is a useful tool for discussing various systems of quantified modal logic, including those which are related to counterpart theory and metaframe.
We discuss different theories of possible worlds, such as modal realism and modal actualism, and how objects exist in possible worlds. Lewis$'$s modal realism and counterpart theory have some advantages, but we argue that there are further reasons to accept the theory of individual concepts from the perspectives of philosophy of time and translation of logics. We review the development of intensional logic and discuss ideas from Carnap and Church. Higher order intensional logic is more powerful than quantified modal logic, but it might face the challenges of the deviant sense-functions and the Russell-Myhill paradox. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:29:38Z (GMT). No. of bitstreams: 1 ntu-108-D99124008-1.pdf: 2793665 bytes, checksum: c759ca4c4478ea6fb30182dde0f25845 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 第一章 導論 1
1.1單稱詞 1 1.2對應的邏輯的語意學設計 3 1.3章節結構 7 第二章 克里普奇式語意學 9 2.1命題模態邏輯與可能世界語意學 10 2.2量化模態邏輯:個體常元與嚴格指稱詞 11 2.3公理化方法與樹枝法 14 第三章 副本理論 23 3.1路易士的副本理論 23 3.2對於模態實在論與副本理論的攻擊 27 3.3從跨世界等同到副本 31 3.4時間哲學 33 3.5從副本到個體概念:K(NId) 39 3.6副本語意學 43 3.7副本理論的樹枝法 45 第四章 內涵邏輯的回顧 53 4.1卡爾納普的外延-內涵方法 53 4.2菲廷與一階內涵邏輯FOIL 57 第五章 後設框架 63 5.1後設框架語意學 63 5.2後設框架的樹枝法 68 5.3後設框架語意學下的完備性 72 5.4後設框架語意學的問題 77 第六章 內涵邏輯裡頭函數的內涵 80 6.1述詞的意含 80 6.2克萊門與未完全意含 87 6.3葛雷哀歌困惑 90 6.4羅素-邁希爾悖論 96 第七章 結論 107 7.1附錄一 109 7.2附錄二 111 | |
| dc.language.iso | zh-TW | |
| dc.title | 量化模態邏輯的語意學──副本對內涵 | zh_TW |
| dc.title | Semantics for Quantified Modal Logic: Counterparts vs. Intensions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 鄧敦民 | |
| dc.contributor.oralexamcommittee | 王文方,廖純中,蔡承志 | |
| dc.subject.keyword | 量化模態邏輯,可能世界語意學,副本理論,後設框架,內涵邏輯, | zh_TW |
| dc.subject.keyword | quantified modal logic,possible world semantics,counterpart theory,metaframe,intensional logic, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU201903520 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 文學院 | zh_TW |
| dc.contributor.author-dept | 哲學研究所 | zh_TW |
| 顯示於系所單位: | 哲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
