請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
| dc.contributor.author | Jia-Rong Bao | en |
| dc.contributor.author | 包家榮 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:29:00Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | Arshavsky, V.Y., Lamb, T.D., and Pugh Jr, E.N. (2002). G proteins and phototransduction. Annual Review of Physiology 64, 153-187.
Berson, D.M., Castrucci, A.M., and Provencio, I. (2010). Morphology and mosaics of melanopsin‐expressing retinal ganglion cell types in mice. Journal of Comparative Neurology 518, 2405-2422. Chen, S.-K., Badea, T., and Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92. Chen, S., Zhi, Z., Ruan, Q., Liu, Q., Li, F., Wan, F., Reinach, P.S., Chen, J., Qu, J., and Zhou, X. (2017). Bright light suppresses form-deprivation myopia development with activation of dopamine d1 receptor signaling in the on pathway in retina. Invest Ophthalmol Vis Sci 58, 2306-2316. Chew, K.S., Schmidt, T.M., Rupp, A.C., Kofuji, P., and Trimarchi, J.M. (2014). Loss of gq/11 genes does not abolish melanopsin phototransduction. PloS one 9, e98356. Cook, P.B., and McReynolds, J.S. (1998). Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nature Neuroscience 1, 714-719. Czeisler, C.A., Shanahan, T.L., Klerman, E.B., Martens, H., Brotman, D.J., Emens, J.S., Klein, T., and Rizzo, J.F. (1995). Suppression of melatonin secretion in some blind patients by exposure to bright light. New England Journal of Medicine 332, 6-11. Díaz, N.M., Morera, L.P., Verra, D.M., Contin, M.A., and Guido, M.E. (2014). Early appearance of nonvisual and circadian markers in the developing inner retinal cells of chicken. BioMed research international 2014. Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.-K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49-60. Freedman, M.S., Lucas, R.J., Soni, B., von Schantz, M., Muñoz, M., David-Gray, Z., and Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502-504. Hardie, R.C., and Raghu, P. (2001). Visual transduction in Drosophila. Nature 413, 186. Hattar, S., Liao, H.-W., Takao, M., Berson, D.M., and Yau, K.-W. (2002a). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070. Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002b). Melanopsin-containing retinal. ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070. Jacobs, G.H., Neitz, J., and Deegan II, J.F. (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655. Kretschmer, F., Sajgo, S., Kretschmer, V., and Badea, T.C. (2015). A system to measure the Optokinetic and Optomotor response in mice. Journal of Neuroscience Methods 256, 91-105. Lockley, S.W., Skene, D.J., Arendt, J., Tabandeh, H., Bird, A.C., and Defrance, R. (1997). Relationship between melatonin rhythms and visual loss in the blind. The Journal of Clinical Endocrinology & Metabolism 82, 3763-3770. Lucas, R.J., Douglas, R.H., and Foster, R.G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature neuroscience 4, 621. Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R., et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene. Cell 80, 757-765. Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B., and Jegla, T. (2005). Illumination of the melanopsin signaling pathway. Science 307, 600-604. Provencio, I., Jiang, G., Willem, J., Hayes, W.P., and Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences 95, 340-345. Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F., and Rollag, M.D. (2000). A novel human opsin in the inner retina. Journal of Neuroscience 20, 600-605. Schmidt, T.M., Alam, N.M., Chen, S., Kofuji, P., Li, W., Prusky, G.T., and Hattar, S. (2014). A Role for Melanopsin in Alpha Retinal Ganglion Cells and Contrast Detection. Neuron 82, 781-788. Sonoda, T., and Schmidt, T.M. (2016). Re-evaluating the Role of Intrinsically Photosensitive Retinal Ganglion Cells: New Roles in Image-Forming Functions. Integr Comp Biol 56, 834-841. Stirman, J., Townsend, L.B., and Smith, S. (2016). A touchscreen based global motion perception task for mice. Vision Res 127, 74-83. Tu, D.C., Zhang, D., Demas, J., Slutsky, E.B., Provencio, I., Holy, T.E., and Van Gelder, R.N. (2005). Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987-999. Tufford, A.R., Onyak, J.R., Sondereker, K.B., Lucas, J.A., Earley, A.M., Mattar, P., Hattar, S., Schmidt, T.M., Renna, J.M., and Cayouette, M. (2018). Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Rep 23, 2416-2428. Werblin, F.S., and Copenhagen, D.R. (1974). Control of Retinal Sensitivity. The Journal of General Physiology 63, 88-110. Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience 5, 747-757. Xue, T., Do, M., Riccio, A., Jiang, Z., Hsieh, J., Wang, H., Merbs, S., Welsbie, D., Yoshioka, T., and Weissgerber, P. (2011). Melanopsin signalling in mammalian iris and retina. Nature 479, 67. Yoshimura, T., and Ebihara, S. (1996). Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. Journal of Comparative Physiology A 178, 797-802. Zhao, X., Stafford, B.K., Godin, A.L., King, W.M., and Wong, K.Y. (2014). Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. The Journal of physiology 592, 1619-1636. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21224 | - |
| dc.description.abstract | 在視網膜中,視神經節細胞負責彙整感光細胞傳遞下來的訊號並將其傳遞至大腦中的視覺皮層形成視覺。有一種特殊的視神經節細胞可以感光,叫自主感光視神經細胞 (intrinsically photosensitive retinal ganglion cells)。雖然一開始自主視感光神經細胞僅被發現具有非成像相關之功能,像是調節生理時鐘與瞳孔反射等,越來越多證據指出自主感光視神經細胞也可以調控視覺成像。但是其中的機制仍然不清楚。在此篇研究中,我們利用小鼠作為模式動物去探討自主感光視神經細胞是否具有視覺成像的功能。藉由兩選項強迫選擇法(two-alternative forced choices),我們發現在小鼠中剃除M1自主感光視神經細胞可能影響視覺成像。在小鼠中剃除M1自主感光視神經細胞使其需要更長的時間學習兩選項強迫選擇法。除此之外,M1自主感光視神經細胞剃除小鼠中也擁有與野生型小鼠相同的視覺敏銳度(visual acuity)與對比敏感性(contrast sensitivity)。我們研究指出兩選項強迫選擇法可以被利用於測量小鼠的視覺功能。 | zh_TW |
| dc.description.abstract | In retina, the retinal ganglion cell is responsible for integrating the signals form the photoreceptor, rod and cone, and sending the signals to the visual cortex to form the vision. There is one special type of retinal ganglion cell expressing photopigment, melanopsin, can detect the light called intrinsically photosensitive retinal ganglion cells (ipRGCs). Although ipRGCs were found only having non-image-forming function at first, such as circadian regulation and pupil light reflex, there are more and more evidences indicating that ipRGCs can modulate image-forming function. However, the mechanism remains unclear. Here, we use mice as the animal model to investigate whether the ipRGCs have the function in image-forming by using the two-alternative forced choices (2AFC) method. We found that it take more days for M1 eliminating mice to learn the task compare to the WT. In addition, M1 eliminating mice have similar spatial frequency threshold and contrast sensitivity function compared to WT. Our result show that 2AFC could be used to evaluate pattern vision in mice | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:29:00Z (GMT). No. of bitstreams: 1 ntu-108-R05b43020-1.pdf: 1506575 bytes, checksum: cda5e0919bf80841378019113d087c43 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Chapter I Introduction 1 1.1 Retina structure and light transmission in retina 1 1.1.1 Intrinsically photosensitive retina ganglion cells 2 1.1.2 Circadian rhythm 5 1.2 The method to investigate the vision function in rodent 5 Statement of Purpose 8 Chapter II Materials and Methods 9 2.1 Animals 9 2.1.1 Genotyping 9 2.1.2 DNA extraction 9 2.1.3 Polymerase chain reaction (PCR) 10 2.2 Experiment design 10 2.2.1 Two-alternative forced-choice (2AFC) 10 2.2.2 Water control 11 2.2.3 Training procedure 12 2.2.4 Data analysis 12 2.3 Optomotor response test 13 2.4 Adeno-associated virus intravitreal injection 13 2.4.1 Preparation glass needle and virus injection 14 2.4.2 Retina immunohistochemistry 14 2.5 Light-induced c-fos expression in retina 14 2.6 Statistical analysis 15 Chapter III Results 16 3.1 The new way to evaluate the pattern vison in free-moving mice 16 3.2 The M1 ipRGCs eliminating mice did not affect the visual acuity 17 3.3 The M1 ipRGCs eliminating mice have deficit in the contrast sensitivity function 18 3.4 The dopamine agonist could not rescue the visual acuity of Opn4DTA/+ mice 19 3.5 The activation test of starburst amacrine cells in light or dark condition 19 Chapter IV Discussion 20 4.1 The new training protocol for mice to do the visual 2AFC task. 20 4.2 The lower visual acuity and contrast sensitivity in our study. 21 4.3 Development and pattern vision 22 Significance of the work 23 Reference 24 Figures 29 Figure 1. The genetic background of mice used in the study 29 Figure 2. The schematic picture of 2AFC device and visual grating in the study 30 Figure 3. The detailed of training method in 2AFC stage 31 Figure 4. The learning curve of stage I of WT and Opn4DTA/+ mice 33 Figure 5. The learning curve of stage II of WT and Opn4DTA/+ mice 34 Figure 6. The learning curve of correction method of WT and Opn4DTA/+ mice 35 Figure 7. The fitting curve of visual acuity test of wide type and Opn4DTA/DTA 36 Figure 8. The contrast sensitivity task in WT mice in different spatial frequency. 37 Figure 9. The contrast sensitivity task in Opn4DTA/+ mice in different spatial frequency 38 Figure 10. The contrast sensitivity function 39 Figure 11. The dopamine could not rescue the visual acuity in M1 eliminating mice 40 Figure 12. The visual acuity from the optomoter response test 41 Figure 13.The functional test of starburst amacrine cell 42 Appendix 43 The code for manipulation device 43 The code for tender method 46 The code for correction method 51 The code for measure pattern vision 55 | |
| dc.language.iso | en | |
| dc.subject | 兩選項強迫選擇 | zh_TW |
| dc.subject | 自主感光視神經細胞 | zh_TW |
| dc.subject | 視黑質 | zh_TW |
| dc.subject | 視覺敏銳度 | zh_TW |
| dc.subject | 對比敏感性 | zh_TW |
| dc.subject | 2AFC | en |
| dc.subject | ipRGCs | en |
| dc.subject | melanopsin | en |
| dc.subject | visual acuity | en |
| dc.subject | contrast sensitivity | en |
| dc.title | 探討自主感光視神經細胞是否影響對比敏感性 | zh_TW |
| dc.title | Determination whether Intrinsically Photosensitive Retinal Ganglion Cells Influence Contrast Sensitivity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 柯逢春(Fon-Chun Ke) | |
| dc.contributor.oralexamcommittee | 周銘翊(Ming-Yi Chou),焦傳金(Chuan-Chin Chiao) | |
| dc.subject.keyword | 自主感光視神經細胞,視黑質,視覺敏銳度,對比敏感性,兩選項強迫選擇, | zh_TW |
| dc.subject.keyword | ipRGCs,melanopsin,visual acuity,contrast sensitivity,2AFC, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201903788 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
