Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方煒(Wei Fang)
dc.contributor.authorHsing-Ying Chungen
dc.contributor.author鍾興穎zh_TW
dc.date.accessioned2021-06-08T03:28:55Z-
dc.date.copyright2019-08-22
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation1. 方煒。2001。自動化植物工廠。設施栽培自動化專輯。103–111。
2. 方煒。2011a。太陽光型植物工廠-永續性的先進植物工廠。豐年社。
3. 方煒。2011b。完全控制型植物工廠。豐年社。
4. 方煒。2012。臺灣植物工廠發展現況與展望。精密設施工程與職務工場實用化技術研討會。16–23。臺南:臺南區農業改良場。
5. 王慧媛。2010。植物工廠內波士頓萵苣立體化栽培模式之探討。國立臺灣大學生物產業機電工程學系碩士論文。
6. 邱偉毫。2009。控制環境內波士頓萵苣立體化栽培之研究。國立臺灣大學生物產業機電工程學系碩士論文。
7. 吳柏林。2017。提升家電型植物栽培設備效率之研究。國立臺灣大學生物產業機電工程學系碩士論文。
8. 林貽箴、原永洁、王增藍。1996。紫外光照射白菜對抗壞血酸含量的影響。山東師大學報 11(2):115–117。
9. 徐善德、廖玉琬。2009。植物生理學。出版二刷。偉明圖書有限公司。台北。
10. 唐永康、郭雙生、艾為覺、秦利鋒。2010。不同比例紅藍 LED 光照對油菜生長發育之影響。航天醫學與醫學工程 23(3):206–212。
11. 許欣正。2002。光質對組培苗生長影響之研究。國立中興大學農業機械工程學系碩士論文。
12. 曾家澤。2008。蘿蔔嬰、綠花椰菜芽及油菜芽甲醇萃取物之抗氧化活性研究。國立宜蘭大學食品科學系碩士論文。
13. 張明毅、歐哲宇、鍾興穎、鄔家琪、方煒。2010。調控綠光比例對萵苣生長之影響。生物機電與農機科技論文發表會論文集 p .393–397。
14. 傅中滇。2009。碳水化合物含量的測定。出自:張志良、瞿偉菁 主編,植物生理學實驗指導 第三版p. 176– 183。藝軒出版社。台北。
15. 游舒淇。2016。虹吸式潮汐淹灌系統應用於植物工廠內萵苣與芝麻菜栽培之探討。國立臺灣大學生物產業機電工程學系碩士論文。
16. 游舒淇、張明毅、鄔家琪、鍾興穎、方煒。2013。不同光量對紫甘藍芽生長與抗氧化成分的影響。生機與農機學術研討會論文全文手冊 p. 788–793。
17. 楊書瑋。2016。降低潮汐式淹灌系統之養液溫度允許於較高氣溫環境下栽培波士頓萵苣。國立臺灣大學生物產業機電工程學系碩士論文。
18. 劉冠伶、方煒。2011。植物工廠量產低硝酸鹽萵苣之研究。2011 年生物機電與農機科技論文發表會論文集。
19. 衛生福利部。2018。107 年 1 月份全民健康保險業務執行報告。衛生福利部中央健康保險署健保資訊網。< https://www.nhi.gov.tw/Content_List.aspx?n=7D4BD0736B6D2B71&topn=CDA985A80C0DE710>
20. 鍾興穎、張明毅、鄔家琪、方煒。2010。光質與照光照光時間對蘿蔔嬰抗氧化力影響。農機與生機論文發表會論文集。p. 409–414。
21. 鍾興穎、張明毅、鄔家琪、方煒。2011。不同光質對萵苣上下位葉光合作用速率之影響。2011 年生物機電與農機科技論文發表會論文集。
22. 簡君良。2011。植物工廠環境與養液灌溉監控物聯網之建置。國立臺灣大學生物產業機電工程學系碩士論文。
23. Agarwal, A., S. Dutta Gupta, M. Barman, and A. Mitra. 2018. Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L.) growth in response to blue and red photon flux ratios. Environ.al and Experimental Botany 156:170–182.
24. Agarwal, R., A. R. Nissenson, D. Batlle, D. W. Coyne, J. R. Trout, and D. G. Warnock. 2003. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Amer. J. Medicine 115:291–297.
25. Albright, L. D., A. J. Both, and A. J. Chiu. 2000. Controlling greenhouse light to a consistent daily integral. Transactions of the ASAE 43: 421–431
26. Amoozga, A., A. Mohammad, and M. R. Sabzalian. 2017. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 55:85–95.
27. Assmann, S. M. 1988. Enhancement of the stomatal response to blue light by red light, reduced intercellular concentrations of CO2, and low vapor pressure differences. 87:226–231.
28. Atkin, K. and M. A. Nichols. 2004. Organic hydroponics. Acta Hortic. 648:121–127.
29. Bae, J. H., S. Y. Park, and M. M. Oh. 2017. Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with artificial lighting. Hortic. Environ. Biotechnol. 58:357–366.
30. Beto, J. A. and V. K. Bansal. 2004. Medical nutrition therapy in chronic kidney failure: Integrating clinical practice guidelines. J. Amer. Dietetic Assn. 104:404–409.
31. Boardman, N. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 28:355–377.
32. Boccalandro, H. E., C. V. Giordano, E. L. Ploschuk, P. N. Piccoli, R. Bottini, and J. J. Casal. 2012. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol. 158:1475–1484.
33. Both, A., L. Albright, and R. Langhans. 1999. Design of a demonstration greenhouse OEPration for commercial hydroponic lettuce production. ASAE paper. 12–14.
34. Boyer, R. F.and C. J. Mccleary. 1987. Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release. Free radical biology & medicine 3:389–395.
35. Brown, C. S., A. C. Schuerger, and J. C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hortic. Sci. 120:808–813.
36. Cano, N. J. M., M. Aparicio, G. Brunori, J. J. Carrero, B. Cianciaruso, E. Fiaccadori, B. Lindholm, V. Teplan, D. Fouque, and G. Guarnieri. 2009. ESPEN guidelines on parenteral nutrition: adult renal failure. Clinical Nutr. 28:401–414.
37. Carvalho, S. D. and K. M. Folta. 2014. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Hort. Res. 1(8):1–8.
38. Chang, F. H. and J. H. Troughton. 1972. Chlorophyll a/b ratios in C3- and C4-plants. Functional Plant Biology 16 (6): 449–457.
39. Chinta, Y. D., Y. Eguchi, A. Widiastuti, M. Shinohara, and T. Sato. 2015. Organic hydroponics induces systemic resistance against the air-borne pathogen, botrytis cinerea (gray mould). J. Plant Interactions 10:243–251.
40. D’andrade, B. W. and J. J. Brown. 2006. Organic light-emitting device luminaire for illumination applications. Appl. Physics Letters 88:192908.
41. David, K. 2005. Plant pigments and their manipulation. Annual Plant Reviews Vol 12. Davies KM, ed. 2004. Oxford/Boca Raton: Blackwell Publishing/CRC Press, Boca Raton. Ann. Botany 96:1332–1333.
42. Dougher, T.and B. G. Bugbee. 1997. Is blue light good or bad for plants? Life support and biosphere sci. 5:129–136.
43. Dougher, T. a. O.and B. Bugbee. 2001. Evidence for yellow light suppression of lettuce growth. Photochemistry and Photobiology 73:208–212.
44. Duggal, A. R., J. J. Shiang, C. M. Heller, and D. F. Foust. 2002. Organic light-emitting devices for illumination quality white light. Appl. Physics Letters 80:3470–3472.
45. Ebisawa, M., K. Shoji, M. Kato, K. Shimomura, F. Goto, and T. Yoshihara. 2008. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.). Environ. Control in Biology 46:1–11.
46. EurOEPan Food Safety, A. 2008. Nitrate in vegetables - scientific opinion of the panel on contaminants in the food chain. EFSA J. 6:n/a-n/a.
47. Fan, X. X., Z. G. Xu, X. Y. Liu, C. M. Tang, L. W. Wang, and X. L. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Hort. 153:50–55.
48. Fang, W. 2013 Quantification of Performance in plant factory, p. 64–71, Technology Advances in Protected Horticulture-Proceedings of 2013 the 3rd High-level International Forum on Protected Horticulture (Shouguang China).
49. Fernández-Crespo, E., G. Camañes, and P. García-Agustín. 2012. Ammonium enhances resistance to salinity stress in citrus plants. J. of plant physiology 169:1183–1191.
50. Folta, K. M.and K. S. Childers. 2008. Light as a Growth Regulator: Controlling Plant Biology with Narrow-bandwidth Solid-state Lighting Systems. HortScience 43:1957–1964.
51. Garcia-Macias, P., M. Ordidge, E. Vysini, S. Waroonphan, N. H. Battey, M. H. Gordon, P. Hadley, P. John, J. A. Lovegrove, and A. Wagstaffe. 2007. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency. J. Agric. Food Chem. 55:10168–10172.
52. Garland, J. L., C. L. Mackowiak, R. F. Strayer, and B. W. Finger. 1997. Integration of waste processing and biomass production systems as part of the KSC Breadboard project. Advances in Space Res. 20:1821–1826.
53. Gutiérrez, O. M., P. Muntner, D. V. Rizk, W. M. Mcclellan, D. G. Warnock, P. K. Newby, and S. E. Judd. 2014. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: a cohort study. Amer. J. Kidney Diseases 64:204–213.
54. Hanafy Ahmed, A., J. Mishriky, and M. Khalil. 2002. Reducing nitrate accumulation in lettuce (Lactuca sativa L.) plants by using different biofertilizers. Ann. Agri. Sciencecairo 47:27–42.
55. Hasler, C. M. 2002. Functional foods: benefits, concerns and challenges-a position paper from the american council on science and health. J. Nutr. 132: 3772–3781.
56. Heo, J. W., D. H. Kang, H. S. Bang, S. G. Hong, C. H. Chun, and K. K. Kang. 2012. Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean J. Hort. Sci. Technol. 30:6–12.
57. Hermans, C., J. P. Hammond, P. J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11:610-617.
58. Hopkins, W.and N. Hüner. 2004. Photosynthetic electron transport. Introduction to plant physiology. New York: John Wiley:68–71.
59. Hord, N. G., Y. Tang, and N. S. Bryan. 2009. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Amer. J. Clinical Nutr. 90:1–10.
60. Hu, C., J. Zawistowski, W. Ling, and D. D. Kitts. 2003. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric Food Chem. 51:5271–5277.
61. Hung, K. T., D. G. Cheng, Y. T. Hsu, and C. H. Kao. 2008. Abscisic acid-induced hydrogen peroxide is required for anthocyanin accumulation in leaves of rice seedlings. J. Plant Physiol. 165:1280–1287.
62. Hutzen, B., L. Friedman, M. Sobo, L. Lin, L. Cen, S. De Angelis, H. Yamakoshi, H. Shibata, Y. Iwabuchi, and J. Lin. 2009. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Intl. J. Oncology 35:867–872.
63. Jaakola, L.and A. Hohtola. 2010. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ. 33:1239–1247.
64. Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Expt. Botany 75:128–133.
65. Johkan, M., K. Shoji, F. Goto, S.-N. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814.
66. Johnson, I. T. 2007. Phytochemicals and cancer. Proceedings Nutr. Society 66:207–215.
67. Johnson, I. T., G. Williamson, and S. R. Musk. 1994. Anticarcinogenic factors in plant foods: a new class of nutrients? Nutr. Res. Rev. 7:175–204.
68. Jones, J. B. 1982. Hydroponics: Its history and use in plant nutrition studies. J. Plant Nutr. 5:1003–1030.
69. Kefeli, V. I., M. V. Kalevitch, and B. Borsari. 2003. Phenolic cycle in plants and environment. J. Cell and Molecular Biology 2:13.
70. Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622.
71. Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004b. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Botany 94:691–697.
72. Kim, H. H., R. Wheeler, J. Sager, and G. Goins 2004c A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hortic. 659: 467–475
73. Kim, M. J., Y. Moon, J. C. Tou, B. Mou, and N. L. Waterland. 2016. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 49:19–34.
74. Kim, S. J., E. J. Hahn, J. W. Heo, and K.Y. Paek. 2004e. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae 101:143–151.
75. Kim, S. Y., J. E. Park, E. O. Kim, S. J. Lim, E. J. Nam, J. H. Yun, G. Yoo, S. R. Oh, H. S. Kim, and C. W. Nho. 2018. Exposure of kale root to NaCl and Na2SeO3 increases isothiocyanate levels and Nrf(2) signalling without reducing plant root growth. Sci. Rep. 8:11.
76. Kishor, P. B. K., S. Sangam, R. N. Amrutha, P. S. Laxmi, K. R. Naidu, K. R. S. S. Rao, S. Rao, K. J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Sci. 88:424–438.
77. Kong, S. W., H. Y. Chung, M. Y. Chang, and W. Fang. 2015. The contribution of different spectral sections to increase fresh weight of boston lettuce. HortScience 50:1006–1010.
78. Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proceedings Jap. Academy. Series B, Physical and biological sci. 89:447–461.
79. Kozai, T., F. Kazuhiro, and E. S. Runkle. 2016. LED Lighting for Urban Agriculture. 1st ed. Springer Singapore, Singapore.
80. Kozai, T., K. Ohyama, and C. Chun. 2006. Commercialized closed systems with artificial lighting for plant production. Acta Hortic 711: 61–70.
81. Kubota, C., P. Chia, Z. Yang, and Q. Li. 2012. Applications of far-red light emitting diodes in plant production under controlled environments. Acta Hortic 952: 59–66.
82. Lattanzio, V., V. M. T. Lattanzino, and A. Cardinali 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 23–67.
83. Lee, J. G., S. S. Oh, S. H. Cha, Y. A. Jang, S. Y. Kim, Y. C. Um, and S. R. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio-Environ. Control 19: 351–359.
84. Lee, J. S.and Y. H. Kim. 2014. Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean J. Hortic. Sci. Technol. 32:330–339.
85. Lee, J. W., W. H. Kang, K. S. Park, and J. E. Son. 2017. Spectral dependence of electrical energy-based photosynthetic efficiency at single leaf and canopy levels in green- and red-leaf lettuces. Hort., Environ., and Biotechnology 58:111–118.
86. Lee, M. J., J. E. Son, and M. M. Oh. 2014. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J. Sci. Food Agri. 94:197–204.
87. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Expt. Botany 67:59–64.
88. Liu, H., Y. Fu, M. Wang, and H. Liu. 2017. Green light enhances growth, photosynthetic pigments and CO2 assimilation efficiency of lettuce as revealed by ‘knock out’ of the 480–560 nm spectral waveband. Photosynthetica 55:144–152.
89. Liu, X., J. Cohen, and G. Gardner. 2011. Low Fluence Red Light Increases the Transport and Biosynthesis of Auxin. J. Plant Physiology 157(2): 891–904.
90. Lv, S., L. Nie, P. Fan, X. Wang, D. Jiang, X. Chen, and Y. Li. 2012. Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea. Acta Physiologiae Plantarum 34:503–513.
91. Müller, P., X. P. Li, and K. K. Niyogi. 2001. Non-photochemical quenching. Response Excess Light Energy. 125:1558–1566.
92. Ma, X. L., C. H. Zhu, N. Yang, L. J. Gan, and K. Xia. 2016. Gamma-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings. Physiologia Plantarum 158:389–401.
93. Machlin, L. J.and A. Bendich. 1987. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J.: official publication of the Federation of Amer. Societies for Experimental Biology 1:441–445.
94. Marschner, H. 1995. 2-Ion Uptake Mechanisms of Individual Cells and Roots: Short-Distance Transport, p. 6–78. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, London.
95. Martinez-Pineda, M., C. Yague-Ruiz, A. Caverni-Munoz, and A. Vercet-Tormo. 2016. Reduction of potassium content of green bean pods and chard by culinary processing. Tools for Chronic Kidney Disease. Nefrologia 36:427–432.
96. Nakano, R., H. Ishida, M. Kobayashi, A. Makino, and T. Mae. 2010. Biochemical changes associated with in vivo RbcL fragmentation by reactive oxygen species under chilling-light conditions. Plant Biology 12:35–45.
97. Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Scientia Horticulturae 122:134–137.
98. Nishimura, T., S. M. A. Zobayed, T. Kozai, and E. Goto. 2007. Medicinally important secondary metabolites and growth of Hypericum perforatum L. plants as affected by light quality and intensity. Environ. Control Biology 45:113–120.
99. Ogawa, A., T. Eguchi, and K. Toyofuku. 2012. Cultivation methods for leafy vegetables and tomatoes with low potassium content for dialysis patients. Environ. Control Biology 50:407–414.
100. Ogawa, A., S. Taguchi, and C. Kawashima. 2007. A cultivation method of spinach with a low potassium content for patients on dialysis. Jap. J. Crop Sci. 76:232–237.
101. Oh, E., S. Yamaguchi, Y. Kamiya, G. Bae, W. I. Chung, and G. Choi. 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J.: For Cell Molecular Biology 47:124–139.
102. Oh, M.and C. Rajashekar. 2009. Antioxidant content of edible sprouts: effects of environmental shocks. J. Sci. Food Agri. 89: 2221–2227.
103. Olsen, R. L., R. B. Pratt, P. Gump, A. Kemper, and G. Tallman. 2002. Red light activates a chloroplast‐dependent ion uptake mechanism for stomatal OEPning under reduced CO2 concentrations in Vicia spp. New Phytologist 153:497–508.
104. Ouzounis, T., X. Fretté, E. Rosenqvist, and C. O. Ottosen. 2014. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. J. Plant Physiology 171:1491–1499.
105. Ouzounis, T., Rosenqvist, E., Ottosen, C. O. 2015. Spectral Effects of Artificial Light on Plant Physiology and Secondary Metabolism: A Review. Hortscience 50:1128–1135.
106. Owen, W. G.and R. G. LOEPz. 2015. End-of-production Supplemental Lighting with Red and Blue Light-emitting Diodes (LEDs) Influences Red Pigmentation of Four Lettuce Varieties. HortScience 50:676–684.
107. Oyaert, E., E. Volckaert, and P. C. Debergh. 1999. Growth of chrysanthemum under coloured plastic films with different light qualities and quantities. Scientia Horticulturae 79:195–205.
108. Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35(11):771–775.
109. Park, S. Y., S. B. Oh, S. M. Kim, Y. Y. Cho, and M. M. Oh. 2016. Evaluating the effects of a newly develOEPd nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Hort., Environ., Biotechnology 57:478–486.
110. Pi, Z., P. Stevanato, L. H. Yv, G. Geng, X. L. Guo, Y. Yang, C. X. Peng, and X. S. Kong. 2014. Effects of potassium deficiency and replacement of potassium by sodium on sugar beet plants. Russ. J. Plant Physiol. 61:224–230.
111. Reineke, S., F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo. 2009. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–238.
112. Sabzalian, M. R., P. Heydarizadeh, M. Zahedi, A. Boroomand, M. Agharokh, M. R. Sahba, and B. Schoefs. 2014. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy Sustainable Development 34:879–886.
113. Saijai, S., A. Ando, R. Inukai, M. Shinohara, and J. Ogawa. 2016. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics. Bioscience, Biotechnology, Biochemistry 80:2247–2254.
114. Samuoliene, G., A. Brazaityte, R. Sirtautas, A. Virsile, J. Sakalauskaite, S. Sakalauskiene, and P. Duchovskis. 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 93:3286–3291.
115. Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Viršilė, J. Sakalauskaitė, S. Sakalauskienė, and P. Duchovskis. 2013. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 93:3286–3291.
116. Santa-Marı́A, G. E., C. H. Danna, and C. Czibener. 2000. High-affinity potassium transport in barley roots. ammonium-sensitive and -insensitive pathways. Plant Physiology 123:297–306.
117. Saran, R., B. Robinson, K. C. Abbott, L. Y. C. Agodoa, P. Albertus, J. Ayanian, R. Balkrishnan, J. Bragg-Gresham, J. Cao, J. L. T. Chen, E. COEP, S. Dharmarajan, X. Dietrich, A. Eckard, P. W. Eggers, C. Gaber, D. Gillen, D. Gipson, H. Gu, S. M. Hailpern, Y. N. Hall, Y. Han, K. He, P. Hebert, M. Helmuth, W. Herman, M. Heung, D. Hutton, S. J. Jacobsen, N. Ji, Y. Jin, K. Kalantar-Zadeh, A. Kapke, R. Katz, C. P. Kovesdy, V. Kurtz, D. Lavallee, Y. Li, Y. Lu, K. Mccullough, M. Z. Molnar, M. Montez-Rath, H. Morgenstern, Q. Mu, P. Mukhopadhyay, B. Nallamothu, D. V. Nguyen, K. C. Norris, A. M. O’hare, Y. Obi, J. Pearson, R. Pisoni, B. Plattner, F. K. Port, P. Potukuchi, P. Rao, K. Ratkowiak, V. Ravel, D. Ray, C. M. Rhee, D. E. Schaubel, D. T. Selewski, S. Shaw, J. Shi, M. Shieu, J. J. Sim, P. Song, M. Soohoo, D. Steffick, E. Streja, M. K. Tamura, F. Tentori, A. Tilea, L. Tong, M. Turf, D. Wang, M. Wang, K. Woodside, A. Wyncott, X. Xin, W. Zeng, L. Zepel, S. Zhang, H. Zho, R. A. Hirth, and V. Shahinian. 2017. US rensl data system 2016 annual data report chapter 13: international comparisons. Amer. J. of Kidney Diseases 69:S533–S566.
118. Saxena, A. 2012. Nutritional problems in adult patients with chronic kidney disease. Clinical Queries: Nephrology 1:222–235.
119. Schagerl, M.and B. Müller. 2006. Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J. Plant Physiology 163:709–716.
120. Shibuya, T., R. Endo, Y. Kitamura, Y. Kitaya, and N. Hayashi. 2010. Potential photosynthetic advantages of cucumber (Cucumis sativus L.) seedlings grown under fluorescent lamps with high red: far-red light. HortScience 45:553–558.
121. Shibuya, T.and T. Kozai 2001. Light-use and water-use efficiencies of tomato plug sheets in the greenhouse. Envir. Control Biology 39(1):35–41.
122. Shinohara, M., C. Aoyama, K. Fujiwara, A. Watanabe, H. Ohmori, Y. Uehara, and M. Takano. 2011. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Sci. Plant Nutri. 57:190–203.
123. Simon, J. J. 2002. Phytochemicals and cancer. J. Chiropractic Medicine 1:91–96.
124. Son, K. H., J. H. Lee, Y. Oh, D. Kim, M. M. Oh, and B. C. In. 2017. Growth and bioactive compound synthesis in cultivated lettuce subject to light-quality changes. HortScience 52:584–591.
125. Son, K. H.and M. M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light–emitting diodes. HortScience 48:988–995.
126. Sousa, C., G. LOEPs, D. M. Pereira, M. Taveira, P. Valentao, R. M. Seabra, J. A. Pereira, P. Baptista, F. Ferreres, and P. B. Andrade. 2007. Screening of antioxidant compounds during sprouting of Brassica oleracea L. var. costata DC. Combinatorial Chemistry High Throughput Screening 10:377–386.
127. Stutte, G. W., S. Edney, and T. Skerritt. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Horticultural Sci. 44:79–82.
128. Takaichi, M., H. Shimaji, and T. Higashide. 2000. Effect of red/far-red photon flux ratio of solar radiation on growth of fruit vegetable seedlings. Acta Horticulturae 514: 147–156
129. Takeoka, G. R., L. T. Dao, G. H. Full, R. Y. Wong, L. A. Harden, R. H. Edwards, and J. D. J. Berrios. 1997. Characterization of Black Bean (Phaseolus vulgaris L.) Anthocyanins. J. Agri. Food Chem. 45:3395–3400.
130. Taneja, P., P. Labhasetwar, P. Nagarnaik, and J. H. J. Ensink. 2017. The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India. J. Water and Health. 15 (4): 602–614.
131. Tattini, M., C. Galardi, P. Pinelli, R. Massai, D. Remorini, and G. Agati. 2004. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist 163:547–561.
132. Taulavuori, E., K. Taulavuori, J. K. Holopainen, R. Julkunen-Tiitto, C. Acar, and I. Dincer. 2017. Targeted use of LEDs in improvement of production efficiency through phytochemical enrichment. J. Sci. Food Agri. 97:5059–5064.
133. Taulavuori, K., R. Julkunen-Tiitto, V. Hyoky, and E. Taulavuori. 2013. Blue mood for superfood. Nat. Prod. Commun. 8:791–794.
134. Terashima, I., T. Fujita, T. Inoue, W. S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiology 50:684–697.
135. Terfa, M. T., K. A. Solhaug, H. R. Gislerød, J. E. Olsen, and S. Torre. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower OEPning. Physiol. Plant. 148:146–159.
136. Tritt, L. 2004. Nutritional assessment and support of kidney transplant recipients. J. Infusion Nursing : Official Publication Infusion Nurses Society 27:45–51.
137. Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International J. Biochemistry Cell Biology 39: 44–84.
138. Vinha, A. F., R. C. Alves, S. V. P. Barreira, A. S. G. Costa, and M. Oliveira. 2015. Impact of boiling on phytochemicals and antioxidant activity of green vegetables consumed in the mediterranean diet. Food Funct. 6: 1157–1163.
139. Wang, H., G. Cao, and R. L. Prior. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agri. Food Chemistry 45:304–309.
140. Wei, Y. H., Q. C. Huang, H. J. Wang, and P. Hong. 2010. Comparative analysis on pigment content of sun plants and shade plants. Hubei Agri. Sci. 5:1126–1129.
141. Wenqing, Z., S. Yuzhu, Z. Minyan, X. Hong, L. Yanfang, W. Zixing, and W. Bin. 2012. Novel organic light-emitting diodes to be used for plant growth. Current Nanoscience 8:749–752.
142. Williams, K. A., O. Francescangeli, and J. Nelson. 2014. Using organic fertilisers. Practical Hydroponics Greenhouses 146:42–46.
143. Woisky, R. G.and A. Salatino. 1998. Analysis of propolis: some parameters and procedures for chemical quality control. J. Apicultural Res. 37:99–105.
144. Wu, S. J., W. H. Pan, N. H. Yeh, and H. Y. Chang. 2011. Trends in nutrient and dietary intake among adults and the elderly: from NAHSIT 1993–1996 to 2005–2008. Asia Pacific J. Clinical Nutri. 20:251–265.
145. Xu, F., S. Cao, L. Shi, W. Chen, X. Su, and Z. Yang. 2014. Blue Light Irradiation Affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J. Agri. Food Chem. 62:4778–4783.
146. Yamaguchi, T., H. Takamura, T. Matoba, and J. Terao. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204.
147. Yokoi, S., T. Kozai, K. Ohyama, T. Hasegawa, C. Chun, and C. Kubota. 2003. Effects of leaf area index of tomato seedling populations on energy utilization efficiencies in a closed transplant production system. Shokubutsu Kojo Gakkaishi 15:231–238.
148. Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380–383.
149. Yoshida, T., K. Sakuma, and H. Kumagai. 2014. Nutritional and taste characteristics of low-potassium lettuce develOEPd for patients with chronic kidney diseases. Hong Kong J. Nephrology 16:42–45.
150. Zhang, G., M. Johkan, M. Hohjo, S. Tsukagoshi, and T. Maruo. 2017. Plant growth and photosynthesis response to low potassium conditions in three lettuce (Lactuca sativa) types. Horti. J. 86:229–237.
151. Zhang, P., J. Lee, G. Kang, Y. Li, D. Yang, B. Pang, and Y. Zhang. 2018. Disparity of nitrate and nitrite in vivo in cancer villages as compared to other areas in Huai River Basin, China. Sci. Total Environ. 612:966–974.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21220-
dc.description.abstract本研究首先探討如何透過人工光源光譜和養液配方的調控來提高完全人工光型植物工廠中萵苣與芽菜的附加價值,其次透過電力產能 (Energy Yield, EY)、光子產能 (Photon Yield, PY) 與益本比等三項量化指標來評估各作物與各處理間於栽培全程的效率與經濟效益。
芽菜的附加價值可透過提高其抗氧化力來達成;蘿蔔嬰、青花菜芽與紫甘藍芽以光量 50 μmol m–2 s–1,栽培 5 天,可有較高的抗氧化力。其中,全紅光 (R100) 能顯著提高三種芽菜的鮮重;全藍光(B100) 能顯著提高蘿蔔嬰與紫甘藍芽的花青素濃度。紅藍光 (R87:B13) 能顯著提高蘿蔔嬰維生素 C 濃度與 DPPH 清除率。有機發光二極體 (Organic Light-Emitting Diode, OLED,光質:R71:G18:B11:FR14) 可提高青花菜芽與紫甘藍芽的 DPPH 清除率、電力產能與光子產能,以OLED 栽培紫甘藍芽有最高的益本比。
紅橡萵苣的附加價值可透過改善其轉色與提高花青素含量且不影響產能來達成。由播種到採收共6 週,前 5 週使用 R80:B20 栽培,最末週換成 R20:B80 栽培 (SR5SB1),與全程使用冷白 LED 之處理組相比電力產能雖降低了 1%,但花青素的電力產能提高了 159%、光子產能增加了 33%、花青素光子產能增加了 256%,益本比提高了 51%,此光配方可同時兼顧產量與花青素含量。
針對需要洗腎的重症腎臟病患的小眾市場可提供其適合於生食或熟食的三低 (低鉀、低鈉與低硝酸鹽濃度) 萵苣。選定每百克萵苣鮮重之鉀、鈉與硝酸鹽濃度上限分別為 80,30 與 250 mg,三項數值均低於上限值者以三低萵苣稱之。本研究開發出兩種栽培流程,分別可生產生食用與熟食用的三低萵苣,前者可降低鉀濃度約 90%,但鮮重只降低 23%;後者可降低鉀濃度約 52%,鮮重不降低。對於不喜歡使用化學養液偏愛有機產品的消費者而言,使用有機養液與益生菌栽培萵苣,也可提供其另一選擇。以本研究選定的有機養液栽培波士頓萵苣可顯著增加鮮重 134%,降低硝酸鹽濃度 60.4%。有機養液搭配光合菌能有效刺激根毛之發育,與山崎養液處理組相比三種萵苣 (波士頓、香波綠與皺葉) 地下部鮮重提高了 48%–143%。
本研究在使用PY 與EY的基礎上建立了益本比的概念,益本比較高代表相同的耗電支出所生產的產品的產值較高。三者共同可作為評估各栽培作物、各種光配方或各種栽培法等的效率與獲利之比較,譬如栽培芽菜比栽培波士頓萵苣的益本比高出 20%–630%,栽培低鉀萵苣比栽培波士頓萵苣的益本比提高約 30%。以SR5SB1 光配方栽培紅橡萵苣比使用冷白 LED的益本比高出 100%。
zh_TW
dc.description.abstractThis study first explores how to increase the value-added of lettuce and sprouts in plant factory with artificial light (PFAL) through the regulation of artificial light recipe and nutrient solution recipe, followed by Energy Yield (EY), Photon Yield (PY) and Benefit-Cost ratio. Three quantitative indicators, are used to assess the efficiency and economic benefits of each crop and treatment during the whole cultivation process.
The value-added of sprouts can be achieved by increasing its antioxidant capacity; radish, broccoli and red cabbage sprouts can be cultivated for 5 days with a light intensity of 50 μmol m–2 s–1, which can have a higher antioxidant capacity. Among them, full red light (R100) can significantly increase the fresh weight of three kinds of sprouts; full blue light (B100) can significantly increase the anthocyanin concentration of radish infants and purple cabbage sprouts. Red blue light (R87:B13) can significantly increase the vitamin C concentration and DPPH free radical scavenging rate of radish infants. Organic Light-Emitting Diode (OLED, light quality: R71:G18:B11:FR14) treatments increase DPPH free radical scavenging ability, EY and PY of broccoli sprouts and red cabbage sprouts. OLED treatments has the highest benefit-cost ratio of red cabbage sprouts.
The value-added of red oak lettuce can be achieved by improving its color change and increasing anthocyanin content without reducing production capacity. From sowing to harvesting for 6 weeks, R80:B20 cultivation in the first 5 weeks, and R20:B80 cultivation (SR5SB1) in the last week, the EY was reduced by 1% compared with cold white LEDs in the whole process. However, anthocyanin-EY increased by 159%, PY increased by 33%, anthocyanin-PY increased by 256%, and the benefit-cost ratio increased by 51%. This light recipe can simultaneously take into account both yield and anthocyanin content.
The niche market for severe kidney disease requiring dialysis can provide three low (low potassium, low sodium and low nitrate concentrations) lettuce suitable for ready-to-eat or ready-to-cook lettuce. The upper limit of the potassium, sodium and nitrate concentrations per 100 grams of fresh lettuce was 80, 30 and 250 mg, respectively, and the three values were lower than the upper limit. This study developed two cultivation processes, which can produce three low lettuces for ready-to-eat or ready-to-cook lettuce. The former can reduce the potassium concentration by about 90%, but the fresh weight is only reduced by 23%; the latter can reduce the potassium concentration by about 52%, and the fresh weight does not decrease.
For consumers who don’t like to use chemical solution for production crops, the use of organic nutrients and benefit bacteria to cultivate lettuce can also provide another option. The cultivation of Boston lettuce with the organic nutrient significantly increased the fresh weight by 134% and reduced the nitrate concentration by 60.4%. The organic nutrient solution with photosynthetic bacteria can effectively stimulate the development of root hair. Compared with the Yamazaki nutrient treatment group, the fresh weight of the three kinds lettuce (Boston, Frill-ice and Frill lettuce) increased by 48%–143%.
This study establishes the concept of benefit-cost ratio based on the PY and EY. The higher Benefit-Cost ratio, means higher the output value of the crops produced by the same power consumption. EY, PY and benefit-cost ratio can be used as a comparison between the efficiency and profitability of each cultivated crop, various light recipe or cultivation methods. From benefit-cost ratio, in PFAL planting sprouts is 20%–630% higher than boston lettuce, and cultivation of low-potassium lettuce can increase about 30% compared to boston lettuce. The SR5SB1 light recipe cultivated red oak lettuce increased the benefit-cost ratio by 100% compared to the control treatments (cool white LEDs).
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:28:55Z (GMT). No. of bitstreams: 1
ntu-108-D02631003-1.pdf: 4613089 bytes, checksum: 0cfdeef2103300f190954b9b7155639c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章、前言與研究目的 1
1.1 前言 1
1.2 研究目的 3
第二章、文獻探討 5
2.1 植物工廠 5
2.1.1 完全人工光型植物工廠 6
2.1.2 太陽光與人工光併用型植物工廠 7
2.1.3 太陽光利用型植物工廠 8
2.2 高附加價值作物 8
2.2.1 光環境對植物生長與二次代謝物的影響 10
2.2.2 UV-A (315–399 nm) 與藍光 (400–499 nm) 對植物之影響 13
2.2.3 綠光 (500–599 nm) 對植物光合作用之探討 15
2.2.4 紅光 (600–699 nm) 與遠紅 (700–799 nm)對植物生長之關聯 18
2.2.5 降低特定營養成分 (低鉀萵苣) 21
2.2.6 有機水耕 23
2.3 植物照明之人工光源 23
2.4 人工光源的量化指標 25
第三章、材料與方法 27
3.1 試驗流程 27
3.1.1 光質與照光照光時間對蘿蔔嬰生長、生理與抗氧化力影響 27
3.1.2 不同光源對青花菜與紫甘藍芽之生長、生理與抗氧化力之影響 29
3.1.3 不同光配方對紅橡萵苣生長與花青素產出之影響 33
3.1.4 開發腎臟病人專用之生熟食萵苣之研究 38
3.1.5 使用有機養液栽培三種萵苣及是否需要養水之探討 45
3.2 分析方法 48
3.2.1 芽菜之鮮、乾重與株高分析方法 48
3.2.2 萵苣之鮮重與葉面積分析方法 48
3.2.3 萵苣葉片顏色 48
3.2.4 葉綠素、葉黃素與類胡蘿蔔素分析方法 48
3.2.5 花青素濃度分析方法 49
3.2.6 硝酸鹽分析方法 51
3.2.7 可溶性碳水化合物分析方法 51
3.2.8 芽菜澱粉分析方法 52
3.2.9 維生素 C 分析方法 52
3.2.10 總酚濃度分析方法 53
3.2.11 DPPH 清除率分析方法 53
3.2.12 還原力分析方法 54
3.2.13 螯合亞鐵率分析方法 56
3.2.14 萵苣中礦物質濃度之量測 56
3.2.15 電力產能 (Energy Yield) 與其相關量化指標之計算 58
3.2.16 光子產能 (Photon Yield) 與其相關量化指標之計算 60
3.2.17 電力產能與光子產能之應用指標計算 62
3.2.18 益本比之計算 63
3.2.19 統計分析與繪圖 64
第四章、結果與討論 65
4.1 不同光源與照光時間對蘿蔔嬰生長與抗氧化力之影響 65
4.2 有機發光二極體對青花菜芽與紫甘藍芽生長、生理與抗氧化力之影響 82
4.3 紅藍光對植物生長與生理之影響 96
4.4 不同光質對紅橡萵苣生長與花青素生產之影響 98
4.5 不同光質搭配時間對紅橡萵苣生長與花青素之影響 103
4.6 紅藍混光對植物生長與生理之影響 110
4.6.1 紅橡萵苣轉色與花青素的探討 112
4.7 使用無鉀養液於採收前處理不同週數對生食用香波綠萵苣生長之影響 114
4.8 不同天數無鉀養液處理對生食用香波綠萵苣生長與礦物質濃度之探討 123
4.9 不同鉀離子濃度處理對熟食用香波綠萵苣生長與礦物質濃度之影響 126
4.10 三低萵苣 (低鉀、低鈉、低硝酸鹽) 生產策略之探討131
4.10.1 三低萵苣之目標值設定131
4.10.2 缺鉀對植物生長之影響 132
4.10.3 銨離子作為鉀離子取代劑對植物之影響 132
4.11 有機養液應用於萵苣栽培之探討 135
4.12 未經養水階段的有機養液 (BIO NK) 結合兩種微生物用於栽培三種萵苣幼苗生長之探討 139
4.13 有機水耕之探討 142
4.14 運用量化指標作為選擇人工光源之探討 144
4.15 植物工廠生產高附加價值作物益本比之探討 147
第五章、結論 156
參考文獻 158
dc.language.isozh-TW
dc.subject機能性蔬菜zh_TW
dc.subject電力產能zh_TW
dc.subject光子產能zh_TW
dc.subject益本比zh_TW
dc.subject低鉀萵苣zh_TW
dc.subject有機水耕zh_TW
dc.subjectBenefit-Cost ratioen
dc.subjectFunctional vegetablesen
dc.subjectBioponicsen
dc.subjectEnergy Yielden
dc.subjectPhoton Yielden
dc.title植物工廠中調整光質與養液配方生產高附加價值芽菜與萵苣zh_TW
dc.titleRegulating Light and Nutrient Recipes to Produce Value-Added Sprout and Lettuce in Plant Factoryen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee林達德(Ta-Te Lin),羅筱鳳(Hsiao-Feng Luo),楊雯如(Wen-Ju Yang),鄔家琪(Chia-Chyi Wu)
dc.subject.keyword電力產能,光子產能,益本比,低鉀萵苣,有機水耕,機能性蔬菜,zh_TW
dc.subject.keywordEnergy Yield,Photon Yield,Benefit-Cost ratio,Bioponics,Functional vegetables,en
dc.relation.page175
dc.identifier.doi10.6342/NTU201903846
dc.rights.note未授權
dc.date.accepted2019-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved