請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Sofia Ya-Hsuan Liou) | |
| dc.contributor.author | Chu-Hsuan Cheng | en |
| dc.contributor.author | 鄭竹軒 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:28:47Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-17 | |
| dc.identifier.citation | Abanades, J. C., & Alvarez, D. (2003). Conversion limits in the reaction of CO2 with lime. Energy & Fuels, 17(2), 308-315.
Abanades, J. C., Anthony, E. J., Lu, D. Y., Salvador, C., & Alvarez, D. (2004). Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE Journal, 50(7), 1614-1622. Abanades, J. C., Anthony, E. J., Wang, J., & Oakey, J. E. (2005). Fluidized bed combustion systems integrating CO2 capture with CaO. Environmental Science & Technology, 39(8), 2861-2866. Abu-Zahra, M. R. M., Sodiq, A., & Feron, P. H. M. (2016). Commercial liquid absorbent-based PCC processes. In Absorption-Based Post-combustion Capture of Carbon Dioxide (pp. 757-778). Woodhead Publishing Aihara, M., Nagai, T., Matsushita, J., Negishi, Y., & Ohya, H. (2001). Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Applied Energy, 69(3), 225-238. Albrecht, K. O., Wagenbach, K. S., Satrio, J. A., Shanks, B. H., & Wheelock, T. D. (2008). Development of a CaO-based CO2 sorbent with improved cyclic stability. Industrial & Engineering Chemistry Research, 47(20), 7841-7848. Alvarez, D., & Abanades, J. C. (2005). Determination of the critical product layer thickness in the reaction of CaO with CO2. Industrial & engineering chemistry research, 44(15), 5608-5615. Alstom, U. K. (2011). European Best Practice Guidelines for Assessment of CO2 Capture Technologies. SINTEF: Trondheim, Norway. Anastas, P. T., & Warner, J. C. (1998). Green chemistry. Frontiers, 640. Anastas, P. T., & Lankey, R. L. (2000). Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chemistry, 2(6), 289-295. Baker, J. W., & Lepech, M. D. (2009, September). Treatment of uncertainties in life cycle assessment. In Intl. Congress on Structral Safety and Reliability. Bare, J. C., Hofstetter, P., Pennington, D. W., & De Haes, H. A. U. (2000). Midpoints versus endpoints: the sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6), 319. Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., ... & Ali, M. (2016). Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations–a review. Applied Energy, 161, 225-255. Blamey, J., Anthony, E. J., Wang, J., & Fennell, P. S. (2010). The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 36(2), 260-279. Broda, M., Kierzkowska, A. M., & Müller, C. R. (2012). Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents. Environmental science & technology, 46(19), 10849-10856. Chang, P. H., Chang, Y. P., Chen, S. Y., Yu, C. T., & Chyou, Y. P. (2011). Ca‐rich Ca–Al‐oxide, high‐temperature‐stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity. ChemSusChem, 4(12), 1844-1851. Chen, Y. T., Karthik, M., & Bai, H. (2009). Modification of CaO by organic alumina precursor for enhancing cyclic capture of CO 2 greenhouse gas. Journal of Environmental Engineering, 135(6), 459-464. Clarens, F., Espí, J. J., Giraldi, M. R., Rovira, M., & Vega, L. F. (2016). Life cycle assessment of CaO looping versus amine-based absorption for capturing CO2 in a subcritical coal power plant. International Journal of Greenhouse Gas Control, 46, 18-27. Clarke, D., Debeljak, B., de Janeiro, V., Göttlicher, G., Graham, D., Kirkegaard, N., ... & vom Berg, W. (2004). CO2 Capture and Storage: A VGB Report on the State of the Art. VGB PowerTech eV: Essen, Germany, 112. Dieter, H., Bidwe, A. R., Varela-Duelli, G., Charitos, A., Hawthorne, C., & Scheffknecht, G. (2014). Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart. Fuel, 127, 23-37. Dennis, J. S., Pacciani, R.(2009).The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent’’, Chemical Engineering Science, 64, 2147-2157. Derevschikov, V. S., Lysikov, A. I., & Okunev, A. G. (2011). High temperature CaO/Y2O3 carbon dioxide absorbent with enhanced stability for sorption-enhanced reforming applications. Industrial & Engineering Chemistry Research, 50(22), 12741-12749. Diego, M. E., Arias, B., & Abanades, J. C. (2012). Modeling the solids circulation rates and solids inventories of an interconnected circulating fluidized bed reactor system for CO2 capture by calcium looping. Chemical engineering journal, 198, 228-235. Diego, M. E., Arias, B., Alonso, M., & Abanades, J. C. (2013). The impact of calcium sulfate and inert solids accumulation in post-combustion calcium looping systems. Fuel, 109, 184-190. Energy, G. (2018). CO2 Status Report 2017. International Energy Agency: Paris, France. Erans, M., Manovic, V., & Anthony, E. J. (2016). Calcium looping sorbents for CO2 capture. Applied Energy, 180, 722-742. Fennell, P. S., Pacciani, R., Dennis, J. S., Davidson, J. F., & Hayhurst, A. N. (2007). The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand. Energy & fuels, 21(4), 2072-2081. Filitz, R., Kierzkowska, A. M., Broda, M., & Müller, C. R. (2011). Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites. Environmental science & technology, 46(1), 559-565. Fischer, S. K., Hughes, P. J., Fairchild, P. D., Kusik, C. L., Dieckmann, J. T., McMahon, E. M., & Hobday, N. (1991). Energy and global warming impacts of CFC alternative technologies (No. DOE/AFEAS--92016353). Oak Ridge National Lab.. Florin, N. H., Blamey, J., & Fennell, P. S. (2010). Synthetic CaO-based sorbent for CO2 capture from large-point sources. Energy & Fuels, 24(8), 4598-4604. Florin, N. H., Harris, A. T. (2008), “Screening CaO-Based Sorbents for CO2 Capture in Biomass Gasifiers’’, Energy & Fuels, 22, 2734–2742. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126. Grasa, G. S., & Abanades, J. C. (2006). CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research, 45(26), 8846-8851. Gray M L, Soong Y, Champagne K J, Pennline H, Baltrus J P,Stevens R W, Khatri R Jr, Chuang S S C, Filburn T, (2005).Improved immobilized carbon dioxide capture sorbents.Fuel Processing Technology, 86(14-15): 1449–1455. Guo, M., Zhang, L., Yang, Z., Tang, Q, (2011) .Removal of CO2 by CaO/MgO and CaO/Ca9Al6O18 in the Presence of SO2, Energy & Fuels, 25, 5514-5520. Han, C., & Harrison, D. P. (1994). Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chemical Engineering Science, 49(24), 5875-5883. Hanak, D. P., Anthony, E. J., & Manovic, V. (2015). A review of developments in pilot-plant testing and modelling of calcium looping process for CO 2 capture from power generation systems. Energy & Environmental Science, 8(8), 2199-2249. HOEVEN, M. V. D. (2013). CO2 Emissions From Fuel Combustion IEA Statistics. International Energy Agency: highlights. França: International Energy Agency. Huang, H. Y., Yang, R. T., (2003).Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas, Ind. Eng. Chem. Res., 42, , 2427-2433. IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp. IPCC, “Climate Change 2007: The Physical Science Basis”, 2007. IPCC, “Climate Change 2014: Mitigation of Climate Change”, 2014. IPCC (Intergovernmental Panel on Climate Change). (2018). Special Report, Global Warming of 1.5° C (SR15). Kierzkowska, A. M., Pacciani, R., & Müller, C. R. (2013). CaO‐based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem, 6(7), 1130-1148. Khalilpour, R., Mumford, K., Zhai, H., Abbas, A., Stevens, G., & Rubin, E. S. (2015). Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 103, 286-300. Lara, Y., Lisbona, P., Martínez, A., & Romeo, L. M. (2013). Design and analysis of heat exchanger networks for integrated Ca-looping systems. Applied Energy, 111, 690-700. Lee, Z. H., Lee, K. T., Bhatia, S., Mohamed, A. R. (2012).Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials, Renewable and Sustainable Energy Reviews, 16, , 2599-2609. Li, S., Alvarado, G., Noble, R., Falconer, J. (2005).Effects of impurities on CO/CH separations through SAPO-34 membranes, Journal of Membrane Science, 251, 59-66. Li, Y., Zhao, C., Chen, H., Ren, Q., & Duan, L. (2011). CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle. Energy, 36(3), 1590-1598. Li, Z. S., Cai, N. S., & Huang, Y. Y. (2006). Effect of preparation temperature on cyclic CO2 capture and multiple carbonation− calcination cycles for a new Ca-based CO2 sorbent. Industrial & engineering chemistry research, 45(6), 1911-1917. Liu, W., An, H., Qin, C., Yin, J., Wang, G., Feng, B., & Xu, M. (2012). Performance enhancement of calcium oxide sorbents for cyclic CO2 capture A review. Energy & Fuels, 26(5), 2751-2767. Liu, M., Lei, J., Guo, L., Du, X., & Li, J. (2015). The application of thermal analysis, XRD and SEM to study the hydration behavior of tricalcium silicate in the presence of a polycarboxylate superplasticizer. Thermochimica acta, 613, 54-60. Liu, W., Feng, B., Wu, Y., Wang, G., Barry, J., & Diniz da Costa, J. C. (2010b). Synthesis of sintering-resistant sorbents for CO2 capture. Environmental science & technology, 44(8), 3093-3097. Liu, W., Low, N. W., Feng, B., Wang, G., Costa, J. C. D. (2010a) .Calcium Precursors for the Production of CaO Sorbents for Multicycle CO2 Capture, Environ. Sci. Technol., 44, 841–847. Lisboa, H. M., Duarte, M. E., & Cavalcanti-Mata, M. E. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. Lu, H., Reddy, E. P., & Smirniotis, P. G. (2006). Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. Industrial & engineering chemistry research, 45(11), 3944-3949. Luo, C., Zheng, Y., Ding, N., Wu, Q., Bian, G., & Zheng, C. (2010). Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture. Industrial & Engineering Chemistry Research, 49(22), 11778-11784. Luo, C., Zheng, Y., Ding, N., Wu, Q. L., & Zheng, C. G. (2011a). SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture. Chinese Chemical Letters, 22(5), 615-618. Luo, C., Zheng, Y., Ding, N., & Zheng, C. (2011b). Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives. Korean Journal of Chemical Engineering, 28(4), 1042-1046. Lysikov, A. I., Salanov, A. N., Okunev, A. G.(2007). Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation-Decomposition Cycles, Ind. Eng. Chem. Res., 46, 4633-4638. Manovic, V., & Anthony, E. J. (2007). Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environmental science & technology, 41(4), 1420-1425. Manovic, V., & Anthony, E. J. (2008). Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environmental science & technology, 42(11), 4170-4174. Manovic, V., & Anthony, E. J. (2009a). CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture. Environmental science & technology, 43(18), 7117-7122. Manovic, V., & Anthony, E. J. (2009b). Improvement of CaO-based sorbent performance for CO2 looping cycles. Thermal Science, 13(1), 89-104. Manovic, V., & Anthony, E. J. (2009c). Long-term behavior of CaO-based pellets supported by calcium aluminate cements in a long series of CO2 capture cycles. Industrial & Engineering Chemistry Research, 48(19), 8906-8912. Manovic, V., & Anthony, E. J. (2009d). Screening of binders for pelletization of CaO-based sorbents for CO2 capture. Energy & Fuels, 23(10), 4797-4804. Manovic, V., & Anthony, E. J. (2010a). CO2 carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions. Industrial & Engineering Chemistry Research, 49(15), 6916-6922. Manovic, V., & Anthony, E. J. (2010b). Sintering and formation of a nonporous carbonate shell at the surface of CaO-based sorbent particles during CO2-capture cycles. Energy & Fuels, 24(10), 5790-5796. Martavaltzi, C. S., & Lemonidou, A. A. (2008). Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous and Mesoporous Materials, 110(1), 119-127. Martínez, I., Murillo, R., Grasa, G., & Abanades, J. C. (2011). Integration of a Ca looping system for CO2 capture in existing power plants. AIChE Journal, 57(9), 2599-2607. Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44(247), 335-341. Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III. Middlemas, S., Fang, Z. Z., & Fan, P. (2015). Life cycle assessment comparison of emerging and traditional titanium dioxide manufacturing processes. Journal of Cleaner Production, 89, 137-147. Pacciani, R., Müller, C. R., Davidson, J. F., Dennis, J. S., & Hayhurst, A. N. (2008). Synthetic Ca‐based solid sorbents suitable for capturing CO2 in a fluidized bed. The Canadian journal of chemical engineering, 86(3), 356-366. Panos, I., Acosta, N., & Heras, A. (2008). New drug delivery systems based on chitosan. Current Drug Discovery Technologies, 5(4), 333-341. Perejón, A., Romeo, L. M., Lara, Y., Lisbona, P., Martínez, A., & Valverde, J. M. (2016). The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Applied Energy, 162, 787-807. Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., ... & Attalla, M. (2009). Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environmental science & technology, 43(16), 6427-6433. Radfarnia, H. R., & Iliuta, M. C. (2012). Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture. Industrial & Engineering Chemistry Research, 51(31), 10390-10398. Rezvani, S., Huang, Y., McIlveen-Wright, D., Hewitt, N., & Mondol, J. D. (2009). Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel, 88(12), 2463-2472. Rodriguez, N., Alonso, M., Grasa, G., & Abanades, J. C. (2008). Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO. Chemical Engineering Journal, 138(1-3), 148-154. Rolfe, A., Huang, Y., Haaf, M., Rezvani, S., MclIveen-Wright, D., & Hewitt, N. J. (2018). Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation. Applied energy, 222, 169-179. Romeo, L. M., Abanades, J. C., Escosa, J. M., Paño, J., Giménez, A., Sánchez-Biezma, A., & Ballesteros, J. C. (2008). Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants. Energy Conversion and Management, 49(10), 2809-2814. Romeo, L. M., Lara, Y., Lisbona, P., & Escosa, J. M. (2009). Optimizing make-up flow in a CO2 capture system using CaO. Chemical Engineering Journal, 147(2-3), 252-258. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., & Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes. Chemical Engineering Research and Design, 77(1), 62-68. Soler, J. M. (2007). Thermodynamic description of the solubility of CSH gels in hydrated Portland cement. Literature review (No. POSIVA-WR--07-88). Posiva Oy. Sultan, D. S., Müller, C. R., & Dennis, J. S. (2010). Capture of CO2 using sorbents of calcium magnesium acetate (CMA). Energy & Fuels, 24(6), 3687-3697. Sun, P., Grace, J. R., Lim, C. J., & Anthony, E. J. (2007). The effect of CaO sintering on cyclic CO2 capture in energy systems. AIChE Journal, 53(9), 2432-2442. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. Valverde, J. M., Perejón, A., & Perez-Maqueda, L. A. (2012). Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions. Environmental science & technology, 46(11), 6401-6408. Valverde, J. M. (2013). Ca-based synthetic materials with enhanced CO 2 capture efficiency. Journal of Materials Chemistry A, 1(3), 447-468. Vieille, L., Govin, A., & Grosseau, P. (2012). Improvements of calcium oxide based sorbents for multiple CO2 capture cycles. Powder technology, 228, 319-323. Vorrias, I., Atsonios, K., Nikolopoulos, A., Nikolopoulos, N., Grammelis, P., & Kakaras, E. (2013). Calcium looping for CO2 capture from a lignite fired power plant. Fuel, 113, 826-836. Wood, S. W., & Cowie, A. (2004). A review of greenhouse gas emission factors for fertiliser production. Wang, M., & Lee, C. G. (2009). Absorption of CO2 on CaSiO3 at high temperatures. Energy Conversion and Management, 50(3), 636-638. Wood, S. W., & Cowie, A. (2004). A review of greenhouse gas emission factors for fertiliser production. Wu, S. F., Li, Q. H., Kim, J. N., & Yi, K. B. (2008). Properties of a nano CaO/Al2O3 CO2 sorbent. Industrial & engineering chemistry research, 47(1), 180-184. Wu, S. F., & Zhu, Y. Q. (2010). Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent. Industrial & Engineering Chemistry Research, 49(6), 2701-2706. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., & Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of environmental sciences, 20(1), 14-27. Zhou, Z., Qi, Y., Xie, M., Cheng, Z., & Yuan, W. (2012). Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance. Chemical Engineering Science, 74, 172-180. 江弈炘, & 康嘉麟. (2018). 利用單乙醇胺和稀釋氨水溶液捕獲二氧化碳之填充床及超重力旋轉床吸收塔比較. 化工, 65(2), 26-44. 張文振, 溫增文, 陳瑞燕, 柳萬霞, 黃欽銘, & 徐恆文. (2017). 1.9 MW_ (th) 鈣迴路捕獲二氧化碳試驗廠操作性能研究. 燃燒季刊, (98), 18-31. 徐恆文,二氧化碳的捕獲與分離,科學發展,413期,2007,24-27。 徐恆文, 柳萬霞, & 黃欽銘. (2012). 鈣迴路捕獲 CO2 技術的展望與機會. 鑛冶: 中國鑛冶工程學會會刊, 56(2), 13-20. 黃至弘, 陳顥, & 談駿嵩. (2016). 於高速旋轉床中使用高效率低能耗吸收劑捕獲 CO_2. 化工, 63(1), 38-53. 黃啟峰. (2007). 二氧化碳與地球暖化. 科學發展 (413). 黃欽銘, 柳萬霞, 陳旺, 陳瑞燕, 陳威丞, 周揚震, ... & 徐恆文. (2016). 鈣循環二氧化碳捕獲試驗廠實驗測試結果. 燃燒季刊, (95), 51-64. 陳品臻. (2017). CaO/TiO2 中孔洞微米球之合成, 改質及其對二氧化碳捕集能力之研究. 臺灣大學地質科學研究所學位論文, 1-137. 談駿嵩、王志盈. (2015). 二氧化碳捕獲. 科學發展 (510). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21212 | - |
| dc.description.abstract | 鈣迴路程序(Calcium looping)為新一代的碳捕獲技術,利用價格低廉且取得容易的石灰岩作為載體,在兩座高溫的流體化床中不斷地循環進行碳酸化/鍛燒反應來捕捉二氧化碳。然而在捕碳過程中,石灰岩會因高溫燒結使得活性快速衰退,需要消耗大量的石灰岩以維持系統的捕碳效率,連帶影響了系統的耗電量與耗煤量,使得改善材料的反應活性成為改良鈣迴路程序的重要研究主題之一。本研究以氣膠自組裝系統(aerosol-assisted self-assembly system, AASA system) 合成高穩定性的鈣鈦(CaTi)材料作為載體捕捉二氧化碳。藉由X光繞射分析(XRD)可發現CaTi材料中主要含有氧化鈣(CaO)與鈦酸鈣(CaTiO3)之特徵峰,而BET分析下材料比表面積在10-16m2/g,最後利用熱重分析(TGA)進行二氧化碳吸附測試,其結果顯示鈣鈦莫爾比為5的CaTi材料,能在第20次的反應,仍保持良好的活性(0.38g-CO2/g-sorbent)。通過鈣迴路程序的模擬可發現,相較於天然石灰岩,使用鈣鈦材料能有效地減少鈣迴路程序中鈣基吸附材、煤炭與電能的消耗量。
本研究針對火力電廠中的鈣迴路系統使用天然石灰岩與CaTi材料,以Simapro7.18軟體進行生命週期評估(Life cycle assessment),採用ReCiPe衝擊評估方法量化這兩種案例的環境衝擊來進行比較。LCA結果顯示使用了CaTi材料的鈣迴路系統,雖然材料耗損遠低於石灰岩,但仍在多項環境衝擊中高於使用了石灰岩的鈣迴路系統,尤其是海洋生態毒性、人體毒性以及氣候變遷的衝擊項目。其衝擊來源主要來自於CaTi材料所使用的原料中的硝酸鈣。未來將針對CaTi材料所使用的原料與合成流程做修正,使CaTi材料能成為更環境友善的材料。 | zh_TW |
| dc.description.abstract | Calcium looping is a new generation of carbon capture technology, which involved limestone, a cheap and accessible sorbent for carbon capture by multicyclic carbonation/calcination in high temperature twin fluidized bed. However, there lays a problem with limestone as sorbent, the reactivity would decrease dramatically after just a few cycles due to the sinister effect, which means a great amount of fresh limestones must be put into the system to maintain the the carbon capture efficiency. The fresher limestones as the make up flow, the more coals have to be consumed for keeping the heat balance of the system. This makes modifying the calcium sorbents for improving the reation ratio and slow down the decay rate to be an important key to improve the calcium looping system.
In this study, we synthesize a modfied material, CaTi material with aerosol-assisted self-assembly (AASA) system as the sorbent for carbon capture. In X-ray Powder Diffraction (XRD) the peak of CaO and CaTiO3 can be observed, the BET analysis shows that the specific surface areas of CaTi materials is around 10-16 m2/g and in the Thermogravimetric analysis (TGA) we test the CO2 capture capacity of CaTi material, the result shows in the case of Ca/Ti molar ratio were 5, the CaTi material could maintain high reactivity even in the twentieth cycle(0.38g-CO2/g-sorbent). In the calcium looping process modeling we found out that using CaTi material could reduce the comsumption of the sorbent,coal and energy while comparing to natural limestone. In this study, we applied life cycle assessment by using Simapro 7.18 and ReCiPe impact assessment model to compare the environmental impact of capturing CO2 from the flue gases in a subcritical coal fired power plant with calcium looping, involving two different sorbents, limestone and CaTi material. The result shows though the scenario used CaTi material has much lower consumption, the overall environmental impacts were still higher than using natural limestone, especially in the marine ecotoxicity, human toxicity and climate change catagories.The main contributor of the environmental impact in CaTi material is calcium nitrate used while synthesize. In the future work, we would try to change the formula of the material to improve the evironmetal performance of CaTi material in calcium looping process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:28:47Z (GMT). No. of bitstreams: 1 ntu-108-R05224112-1.pdf: 5720220 bytes, checksum: 6a8b111b9362e613f71b5387b99a48db (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 溫室效應 4 2.2 二氧化碳捕獲 5 2.2.1 二氧化碳捕獲路徑 5 2.2.2 二氧化碳捕獲技術及材料 7 2.3 鈣迴路程序(Calcium Looping Process, CaL) 11 2.3.1 吸附劑燒結(Sinistering) 14 2.3.2 吸附劑改質 17 2.3.3 鈣迴路程序模擬之方法 26 2.4 環境衝擊評估 31 2.4.1 綠色化學 31 2.4.2 生命週期評估法 33 2.4.3 衝擊評估模式介紹 .36 2.4.4 不確定性分析 38 第三章 實驗設備及方法 39 3.1 研究架構與內容 39 3.2 材料製備 41 3.3 材料表面特性分析 43 3.3.1 場發射掃描式電子顯微鏡暨能量散佈分析儀(SEM) 43 3.3.2 比表面積分析儀(BET) 43 3.3.3 X射線繞射光譜(XRD) 47 3.4 二氧化碳吸附實驗:熱重分析儀(TGA) 47 3.4.1 實驗流程 48 3.4.2 實驗分析 49 3.5 火力電廠與鈣迴路程序模擬 50 3.5.1 火力電廠參數設定 50 3.5.2 鈣迴路程序模擬設定 52 3.6生命週期評估 56 3.6.1 目標與範疇界定 56 3.6.2 盤查分析 58 3.6.3 衝擊評估 60 第四章 結果與討論 63 4.1 材料表面特性分析 63 4.1.1 形貌分析 63 4.1.2 比表面積分析 65 4.1.3 晶相分析 68 4.2 二氧化碳吸附容量測試 69 4.3 鈣迴路程序模擬 72 4.3.1 鈣基吸附材吸附容量 72 4.3.2 鈣迴路程序參數與捕碳效率之關係 73 4.3.3 鈣迴路程序之投入與產出 76 4.4 生命週期評估 80 4.4.1 石灰岩使用於鈣迴路程序之生命週期評估結果 80 4.4.2 鈣鈦材料使用於鈣迴路程序之生命週期評估結果 81 4.4.3 綜合比較 82 4.4.4 敏感度分析 86 4.4.5 不確定性分析 93 第五章 結論與建議 95 5.1 結論 95 5.2 建議 96 參考文獻 98 附錄A:化學藥劑合成盤查 110 附錄B:噴霧乾燥機參考資料 111 附錄C:盤查清單 112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈣迴路程序 | zh_TW |
| dc.subject | 氣膠自組裝系統 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 燒結 | zh_TW |
| dc.subject | 碳捕獲 | zh_TW |
| dc.subject | Sinister effect | en |
| dc.subject | Caclium looping | en |
| dc.subject | Carbon capture | en |
| dc.subject | Aerosol-assisted self-assembly(AASA) | en |
| dc.subject | Lifecycle assessment(LCA) | en |
| dc.title | 火力發電廠中使用石灰岩與使用鈣鈦改質材料於鈣迴路程序之生命週期評估 | zh_TW |
| dc.title | Life cycle assessment of calcium looping with limestone and Ca/Ti modified material in coal fired power plant | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 闕蓓德(Pei-Te Chiueh) | |
| dc.contributor.oralexamcommittee | 林進榮(Chin-Jung Lin),胡景堯(Ching-Yao Hu) | |
| dc.subject.keyword | 碳捕獲,鈣迴路程序,燒結,氣膠自組裝系統,生命週期評估, | zh_TW |
| dc.subject.keyword | Carbon capture,Caclium looping,Sinister effect,Aerosol-assisted self-assembly(AASA),Lifecycle assessment(LCA), | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU201903074 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
