Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21202
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏安祺
dc.contributor.authorMu Yangen
dc.contributor.author楊牧zh_TW
dc.date.accessioned2021-06-08T03:28:36Z-
dc.date.copyright2019-08-29
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation1. Whalen, S., R.M. Truty, and K.S. Pollard, Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin. Nature genetics, 2016. 48(5): p. 488.
2. Xi, W. and M.A. Beer, Local epigenomic state cannot discriminate interacting and non-interacting enhancer–promoter pairs with high accuracy. PLoS computational biology, 2018. 14(12): p. e1006625.
3. Hernandez-Garcia, C.M. and J.J. Finer, Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 2014. 217: p. 109-119.
4. Mora, A., et al., In the loop: promoter–enhancer interactions and bioinformatics. Briefings in bioinformatics, 2015. 17(6): p. 980-995.
5. Williamson, I., R.E. Hill, and W.A. Bickmore, Enhancers: from developmental genetics to the genetics of common human disease. Developmental cell, 2011. 21(1): p. 17-19.
6. Pennacchio, L.A., et al., Enhancers: five essential questions. Nature Reviews Genetics, 2013. 14(4): p. 288.
7. Günesdogan, U. and M.A. Surani, Developmental competence for primordial germ cell fate, in Current topics in developmental biology. 2016, Elsevier. p. 471-496.
8. Ghavi-Helm, Y., et al., Enhancer loops appear stable during development and are associated with paused polymerase. Nature, 2014. 512(7512): p. 96.
9. Schoenfelder, S., et al., The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome research, 2015. 25(4): p. 582-597.
10. Eukaryotic Transcription Gene Regulation. [cited 2019 07]; Available from: https://courses.lumenlearning.com/wm-biology1/chapter/reading-eukaryotic-transcription-gene-regulation/.
11. Pombo, A. and N. Dillon, Three-dimensional genome architecture: players and mechanisms. Nature reviews Molecular cell biology, 2015. 16(4): p. 245.
12. Krijger, P.H.L. and W. De Laat, Regulation of disease-associated gene expression in the 3D genome. Nature reviews Molecular cell biology, 2016. 17(12): p. 771.
13. Spitz, F. and E.E. Furlong, Transcription factors: from enhancer binding to developmental control. Nature reviews genetics, 2012. 13(9): p. 613.
14. Wang, J., et al., Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome research, 2012. 22(9): p. 1798-1812.
15. Zaret, K.S. and J.S. Carroll, Pioneer transcription factors: establishing competence for gene expression. Genes & development, 2011. 25(21): p. 2227-2241.
16. Boeva, V., Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells. Frontiers in genetics, 2016. 7: p. 24.
17. Farnham, P.J., Insights from genomic profiling of transcription factors. Nature Reviews Genetics, 2009. 10(9): p. 605.
18. Dekker, J. and E. Heard, Structural and functional diversity of topologically associating domains. FEBS letters, 2015. 589(20PartA): p. 2877-2884.
19. Guillon, N., et al., The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PloS one, 2009. 4(3): p. e4932.
20. Model info. [cited 2019 07]; Available from: http://hocomoco11.autosome.ru/motif/AHR_HUMAN.H11MO.0.B.
21. Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus sequences. Nucleic acids research, 1990. 18(20): p. 6097-6100.
22. Detailed information of matrix profile MA0006.1. [cited 2019 07]; Available from: http://jaspar.genereg.net/matrix/MA0006.1/.
23. Bulger, M. and M. Groudine, Functional and mechanistic diversity of distal transcription enhancers. Cell, 2011. 144(3): p. 327-339.
24. Bulger, M. and M. Groudine, Looping versus linking: toward a model for long-distance gene activation. Genes & development, 1999. 13(19): p. 2465-2477.
25. Blackwood, E.M. and J.T. Kadonaga, Going the distance: a current view of enhancer action. Science, 1998. 281(5373): p. 60-63.
26. de Laat, W., et al., Three‐dimensional organization of gene expression in erythroid cells. Current topics in developmental biology, 2008. 82: p. 117-139.
27. Dekker, J., et al., Capturing chromosome conformation. science, 2002. 295(5558): p. 1306-1311.
28. Cullen, K.E., M.P. Kladde, and M.A. Seyfred, Interaction between transcription regulatory regions of prolactin chromatin. Science, 1993. 261(5118): p. 203-206.
29. Miele, A. and J. Dekker, Mapping cis-and trans-chromatin interaction networks using chromosome conformation capture (3C), in The nucleus. 2008, Springer. p. 105-121.
30. Zhao, Z., et al., Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra-and interchromosomal interactions. Nature genetics, 2006. 38(11): p. 1341.
31. Simonis, M., et al., Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nature genetics, 2006. 38(11): p. 1348.
32. Dostie, J., et al., Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome research, 2006. 16(10): p. 1299-1309.
33. Lieberman-Aiden, E., et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome. science, 2009. 326(5950): p. 289-293.
34. Fullwood, M.J., et al., An oestrogen-receptor-α-bound human chromatin interactome. Nature, 2009. 462(7269): p. 58.
35. Li, G., et al., Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC genomics, 2014. 15(12): p. S11.
36. Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489(7414): p. 57.
37. Rao, S.S., et al., A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014. 159(7): p. 1665-1680.
38. Yang, Y., et al., Exploiting sequence-based features for predicting enhancer–promoter interactions. Bioinformatics, 2017. 33(14): p. i252-i260.
39. Hoffman, M.M., et al., Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nature methods, 2012. 9(5): p. 473.
40. Ernst, J. and M. Kellis, ChromHMM: automating chromatin-state discovery and characterization. Nature methods, 2012. 9(3): p. 215.
41. Bernstein, B.E., et al., The NIH roadmap epigenomics mapping consortium. Nature biotechnology, 2010. 28(10): p. 1045.
42. Ramsköld, D., et al., An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS computational biology, 2009. 5(12): p. e1000598.
43. Li, Q., et al., Measuring reproducibility of high-throughput experiments. The annals of applied statistics, 2011. 5(3): p. 1752-1779.
44. Harrow, J., et al., GENCODE: the reference human genome annotation for The ENCODE Project. Genome research, 2012. 22(9): p. 1760-1774.
45. Grant, C.E., T.L. Bailey, and W.S. Noble, FIMO: scanning for occurrences of a given motif. Bioinformatics, 2011. 27(7): p. 1017-1018.
46. Staden, R., Staden: searching for motifs in nucleic acid sequences, in Computer Analysis of Sequence Data. 1994, Springer. p. 93-102.
47. Matys, V., et al., TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes. Nucleic acids research, 2006. 34(suppl_1): p. D108-D110.
48. TRANSFAC. [cited 2019 07]; Available from: http://genexplain.com/transfac/.
49. Kulakovskiy, I.V., et al., HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic acids research, 2017. 46(D1): p. D252-D259.
50. Ali, T., R. Renkawitz, and M. Bartkuhn, Insulators and domains of gene expression. Current opinion in genetics & development, 2016. 37: p. 17-26.
51. Handoko, L., et al., CTCF-mediated functional chromatin interactome in pluripotent cells. Nature genetics, 2011. 43(7): p. 630.
52. Phillips, J.E. and V.G. Corces, CTCF: master weaver of the genome. Cell, 2009. 137(7): p. 1194-1211.
53. Parelho, V., et al., Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell, 2008. 132(3): p. 422-433.
54. Bergmaier, P., et al., Choice of binding sites for CTCFL compared to CTCF is driven by chromatin and by sequence preference. Nucleic acids research, 2018. 46(14): p. 7097-7107.
55. Deshane, J., et al., Sp1 regulates chromatin looping between an intronic enhancer and distal promoter of the human heme oxygenase-1 gene in renal cells. Journal of Biological Chemistry, 2010. 285(22): p. 16476-16486.
56. van Riel, B. and F. Rosenbauer, Epigenetic control of hematopoiesis: the PU. 1 chromatin connection. Biological chemistry, 2014. 395(11): p. 1265-1274.
57. Pham, T.-H., et al., Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU. 1. Nucleic acids research, 2013. 41(13): p. 6391-6402.
58. Heinz, S., et al., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular cell, 2010. 38(4): p. 576-589.
59. Lin, Y.C., et al., Global changes in the nuclear positioning of genes and intra-and interdomain genomic interactions that orchestrate B cell fate. Nature immunology, 2012. 13(12): p. 1196.
60. Staber, P.B., et al., Sustained PU. 1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Molecular cell, 2013. 49(5): p. 934-946.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21202-
dc.description.abstract基因轉錄受到調控因子的調控,如強化子與啟動子等。啟動子位於基因上游附近,然而強化子常位於距離基因幾千個鹼基的位置。強化子透過在三維空間中與啟動子接觸並形成染色質環來達成調控,此為強化子-啟動子交互作用。雖然此現象眾所周知,但該機制的許多相關細節仍在研究中。
這篇論文使用了六種細胞株的染色質交互作用資料,套用計算工具掃描強化子和啟動子序列上的模組,將軟體在強化子和啟動子上掃描出的模組數量與實驗驗證的結合位點比較,發現軟體掃描回報的模組數量比起已知的結合位要多出許多。
進一步去研究有交互作用和無交互作用的強化子-啟動子配對,觀察與相同啟動子配對的有交互作用及無交互作用的強化子,比較其中的結合位模組數量。使用以軟體工具掃描出的模組,在與相同的啟動子配對的情況下,檢定有交互作用和無交互作用的強化子是否具有不同的模組組成。發現了一些模組在有交互作用和無交互作用的強化子上的出現次數達到顯著差異。然而,不同的啟動子在強化子中涉及不同系列的模組,共通有的模組不常見。在多個細胞株中也有發現僅有少量的共通模組,而找到的模組有研究指出其中一些與染色質環化有關。
zh_TW
dc.description.abstractGene transcription is regulated by enhancers and promoters, which are regulatory elements. Promoters are situated close to the gene on the upstream, whereas enhancers are often located at distances up to kilobases from the gene. Enhancers bring about its regulation by coming in contact with promoters in the three-dimensional space and forming a chromatin loop. This is known as enhancer-promoter interactions. While this phenomenon is well-known, the mechanism is still under research.
This thesis used chromatin interaction data of six cell lines. We used computational tools to scan the motifs on enhancer and promoter sequences. We compared the number of motifs on enhancers and promoters as scanned by software with experimental binding sites, and found that the number of motifs reported by software scanning is much larger.
Interacting (positive) and non-interacting (negative) enhancer-promoter pairs were further investigated to look at positive and negative enhancers interacting with the same promoter. We took the scanned motifs and tested whether positive and negative enhancers have different motif composition given that they interact with the same promoter. Some motifs were found to have significant different occurrences in positive and negative enhancers. Different promoters usually involved a different set of motifs in enhancers, and common motifs were few. There were also a few motifs that were commonly found in multiple cell lines. Among the motifs we found, some were reported to be linked to chromatin looping.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:28:36Z (GMT). No. of bitstreams: 1
ntu-108-R05945054-1.pdf: 3786646 bytes, checksum: 43fb00b5b04710386f3a84d9d8510bfd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
第一節 前言 1
第二節 研究目的 2
第二章 文獻回顧 3
第一節 強化子-啟動子交互作用 3
第二節 轉錄因子結合模組 5
第三節 染色質交互作用實驗 8
第四節 強化子-啟動子交互作用相關研究 9
第一項 用表觀基因組資料做預測 9
第二項 用序列資料做預測 10
第三項 相關預測研究的問題 11
第三章 研究材料與方法 13
第一節 使用資料 13
第二節 模組掃描 16
第三節 轉錄因子結合位點資料庫 17
第一項 TRANSFAC 17
第二項 HOCOMOCO 18
第四節 t檢定 18
第五節 研究流程 19
第四章 結果與討論 20
第一節 實驗驗證點位與軟體掃描模組的比較 20
第二節 與啟動子有無交互作用的強化子上模組差異 21
第五章 結論 30
參考文獻 31
dc.language.isozh-TW
dc.subject轉錄因子結合位點zh_TW
dc.subject強化子-啟動子交互作用zh_TW
dc.subject轉錄因子zh_TW
dc.subject模組zh_TW
dc.subject染色質交互作用zh_TW
dc.subjectmotifen
dc.subjectchromatin interactionen
dc.subjecttranscription factor binding siteen
dc.subjecttranscription factoren
dc.subjectenhancer-promoter interactionen
dc.title探討於強化子-啟動子交互作用中之轉錄因子結合特徵zh_TW
dc.titleExploring Transcription Factor Binding Motifs in Enhancer-Promoter Interactionsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor陳倩瑜,歐陽彥正
dc.contributor.oralexamcommittee吳君泰
dc.subject.keyword強化子-啟動子交互作用,轉錄因子,模組,染色質交互作用,轉錄因子結合位點,zh_TW
dc.subject.keywordenhancer-promoter interaction,transcription factor,motif,chromatin interaction,transcription factor binding site,en
dc.relation.page35
dc.identifier.doi10.6342/NTU201904020
dc.rights.note未授權
dc.date.accepted2019-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved