請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21157
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李致毅 | |
dc.contributor.author | Jeng-Feng Li | en |
dc.contributor.author | 李政峰 | zh_TW |
dc.date.accessioned | 2021-06-08T03:27:53Z | - |
dc.date.copyright | 2020-01-14 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-11-17 | |
dc.identifier.citation | [1] “[STDS-802-3-400G] IEEE P802.3bs Approved!.” http://www.ieee802.org/3/400GSG/email/msg01519.html.
[2] “High-Speed Transmission Update: 200G/400G.” https://www.connectorsupplier.com/high-speed-transmission-update-200g400g/. [3] T. Shibasaki, T. Danjo, Y. Ogata, Y. Sakai, H. Miyaoka, F. Terasawa, M. Kudo,H. Kano, A. Matsuda, S. Kawai, T. Arai, H. Higashi, N. Naka, H. Yamaguchi,T. Mori, Y. Koyanagi, and H. Tamura, “3.5 A 56Gb/s NRZ-electrical 247mW/laneserial-link transceiver in 28nm CMOS,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 64–65, Jan 2016. [4] J. Im, D. Freitas, A. Roldan, R. Casey, S. Chen, A. Chou, T. Cronin, K. Geary,S. McLeod, L. Zhou, I. Zhuang, J. Han, S. Lin, P. Upadhyaya, G. Zhang, Y. Frans,and K. Chang, “6.3 A 40-to-56Gb/s PAM-4 receiver with 10-tap direct decision-feedback equalization in 16nm FinFET,” in 2017 IEEE International Solid-StateCircuits Conference (ISSCC), pp. 114–115, Feb 2017. [5] P. Upadhyaya, C. F. Poon, S. W. Lim, J. Cho, A. Roldan, W. Zhang, J. Namkoong,T. Pham, B. Xu, W. Lin, H. Zhang, N. Narang, K. H. Tan, G. Zhang, Y. Frans, andK. Chang, “A Fully Adaptive 19–58-Gb/s PAM-4 and 9.5–29-Gb/s NRZ WirelineTransceiver With Configurable ADC in 16-nm FinFET,” IEEE Journal of Solid-StateCircuits, vol. 54, pp. 18–28, Jan 2019. [6] “Is PAM4 really necessary?.” https://www.edn.com/Home/PrintView?contentItemId=4461146. [7] H. Kobayashi, J. Kang, T. Kitahara, S. Takigami, and H. Sadamura, “Explicit trans-fer function of RC polyphase filter for wireless transceiver analog front-end,” inProceedings. IEEE Asia-Pacific Conference on ASIC,, pp. 137–140, Aug 2002. [8] S. Chen, L. Zhou, I. Zhuang, J. Im, D. Melek, J. Namkoong, M. Raj, J. Shin, Y. Frans,and K. Chang, “A 4-to-16GHz inverter-based injection-locked quadrature clock gen-erator with phase interpolators for multi-standard I/Os in 7nm FinFET,” in 2018IEEE International Solid - State Circuits Conference - (ISSCC), pp. 390–392, Feb2018. [9] J. Lee, Communication Integrated Circuits. Jri Lab, 2017. [10] B. Razavi, “TSPC Logic [A Circuit for All Seasons],” IEEE Solid-State CircuitsMagazine, vol. 8, pp. 10–13, Fall 2016. [11] B. Razavi, Design of Integrated Circuits for Optical Communications. Wiley, 2012. [12] P. Peng, J. Li, L. Chen, and J. Lee, “6.1 A 56Gb/s PAM-4/NRZ transceiver in40nm CMOS,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC),pp. 110–111, Feb 2017. [13] M. Chen and C. K. Yang, “A low-power highly multiplexed parallel PRBS gen-erator,” in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference,pp. 1–4, Sep. 2012. [14] P. Chiang, H. Hung, H. Chu, G. Chen, and J. Lee, “2.3 60Gb/s NRZ and PAM4transmitters for 400GbE in 65nm CMOS,” in 2014 IEEE International Solid-StateCircuits Conference Digest of Technical Papers (ISSCC), pp. 42–43, Feb 2014. [15] T. Shibasaki, T. Danjo, Y. Ogata, Y. Sakai, H. Miyaoka, F. Terasawa, M. Kudo,H. Kano, A. Matsuda, S. Kawai, T. Arai, H. Higashi, N. Naka, H. Yamaguchi,T. Mori, Y. Koyanagi, and H. Tamura, “3.5 A 56Gb/s NRZ-electrical 247mW/laneserial-link transceiver in 28nm CMOS,” in 2016 IEEE International Solid-State Cir-cuits Conference (ISSCC), pp. 64–65, Jan 2016. [16] Y. Frans, J. Shin, L. Zhou, P. Upadhyaya, J. Im, V. Kireev, M. Elzeftawi, H. Hedayati,T. Pham, S. Asuncion, C. Borrelli, G. Zhang, H. Zhang, and K. Chang, “A 56-Gb/s PAM4 Wireline Transceiver Using a 32-Way Time-Interleaved SAR ADC in 16-nmFinFET,” IEEE Journal of Solid-State Circuits, vol. 52, pp. 1101–1110, April 2017. [17] B. Zhang, K. Khanoyan, H. Hatamkhani, H. Tong, K. Hu, S. Fallahi, K. Vakilian,and A. Brewster, “3.1 A 28Gb/s multi-standard serial-link transceiver for backplaneapplications in 28nm CMOS,” in 2015 IEEE International Solid-State Circuits Con-ference - (ISSCC) Digest of Technical Papers, pp. 1–3, Feb 2015. [18] X. Qiu, X. Yin, J. Verbrugghe, B. Moeneclaey, A. Vyncke, C. Van Praet, G. Torfs,J. Bauwelinck, and J. Vandewege, “Fast Synchronization 3R Burst-Mode Receiversfor Passive Optical Networks,” Journal of Lightwave Technology, vol. 32, pp. 644–659, Feb 2014. [19] J. Lee and K. Wu, “A 20-Gb/s Full-Rate Linear Clock and Data Recovery Cir-cuit With Automatic Frequency Acquisition,” IEEE Journal of Solid-State Circuits,vol. 44, pp. 3590–3602, Dec 2009. [20] J. Lee and M. Liu, “A 20-Gb/s Burst-Mode Clock and Data Recovery Circuit Us-ing Injection-Locking Technique,” IEEE Journal of Solid-State Circuits, vol. 43,pp. 619–630, March 2008. [21] W. Lee, K. Wu, J. Jiang, and J. Lee, “A laser ranging radar transceiver with mod-ulated evaluation clock in 65nm CMOS technology,” in 2011 Symposium on VLSICircuits - Digest of Technical Papers, pp. 286–287, June 2011. [22] B. Razavi, RF Microelectronics. Prentice Hall communications engineering andemerging technologies series, Prentice Hall, 2012.[23] M. M. Abdul-Latif and E. Sanchez-Sinencio, “Low Phase Noise Wide Tuning RangeN-Push Cyclic-Coupled Ring Oscillators,” IEEE Journal of Solid-State Circuits,vol. 47, pp. 1278–1294, June 2012. [24] E. Hegazi, J. Rael, and A. Abidi, The Designer’s Guide to High-Purity Oscillators.The Designer’s Guide Book Series, Springer US, 2006. [25] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillatorphase noise,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1921–1930, Dec2001. [26] A. Rylyakov, J. E. Proesel, S. Rylov, B. G. Lee, J. F. Bulzacchelli, A. Ardey,B. Parker, M. Beakes, C. W. Baks, C. L. Schow, and M. Meghelli, “A 25 Gb/sBurst-Mode Receiver for Low Latency Photonic Switch Networks,” IEEE Journalof Solid-State Circuits, vol. 50, pp. 3120–3132, Dec 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21157 | - |
dc.description.abstract | 本論文提出了兩項作品。第一項作品是原型發射機,具有內置的PRBS-7測試模式和三抽頭前饋均衡器。 在14 GHz時可提供大約8 dB的最大增強。為了通過復用器將不同相位的四個四分之一速率的PRBS序列合成為半速率數據序列,提出了一種改進的2-to-1復用器。沿時鐘路徑使用佔空比控制電路,並充當電平轉換器。它的最大調整範圍足以抵禦可能的眼睛變形,約為40%至60%。此外,在這項作品中描述了基於傳統CML拓撲的改進的PAM-4組合器,可產生乾淨的56 Gb/s PAM-4訊號。測試晶片在1 V電源電壓下消耗200 mW的功率,並佔用1×0.8 mm$^2$的面積。在差分輸出下,它提供大約600 mV的輸出擺幅,每個電平之間間隔約200 mV。
第二項作品是突發模式應用程序的接收器。該系統可以分別在有效負載和保護時間內在CDR模式和PLL模式之間切換。整個系統可以25.78125 Gb/s或28.05 Gb/s的速度運行,鎖定時間小於100 ns。 CID容限遠遠超過132位。測試晶片在1.2 V和2.5 V電源電壓下的功耗為335 mW,佔用面積為1200 μm x 850 μm。它可以恢復差分輸出的全速率時鐘和數據。 | zh_TW |
dc.description.abstract | This thesis presents two works. The first work is a prototype transmitter with buit-in PRBS-7 testing pattern and 3-tap FFE. The 3-tap FFE provides maximum boost of approximately 8 dB at 14 GHz. For synthesizing four quarter-rate PRBS sequences with different phases by the multiplexer to half-rate data sequence, a modified 2-to-1 multiplexer is presented. Duty-cycle control circuits are employed along the clock paths and server a role of level converter. Its maximum adjustment range is about 40\% to 60\% enough to counter possible eye distortion. Furthermore, the improved PAM-4 combiner based on traditional CML topology is depicted in this work and results in clean 56 Gb/s PAM-4 signal. The testing chip consumes 200 mW under 1 V supply voltage and occupies 1×0.8 mm$^2$ area. It provides about 600-mV output swing and 200 mV between each level in differential.
The second work is a receiver for burst-mode application. This system can be switched between CDR mode and PLL mode during the payload and guard time, respectively. The whole system can be operated at 25.78125 Gb/s or 28.05 Gb/s with the locking time less than 100 ns. The CID tolerance is well beyond than 132 bits. The testing chip consumes 335 mW under 1.2 V and 2.5 V supply voltage and occupies 1200 μm x 850 μm area. It recovers the full-rate clock and data in differential. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:27:53Z (GMT). No. of bitstreams: 1 ntu-108-F03943040-1.pdf: 12947690 bytes, checksum: df9a5ebe77a6289d96d7430034904e35 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 ii
誌謝 iii Acknowledgements v 摘要 vii Abstract ix 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 2 56Gb/s PAM-4 Transmitter 3 2.1 TX Architecture 3 2.2 TX Building Blocks 5 2.2.1 Duty-Cycle Control Circuit 5 2.2.2 Polyphase Filter 6 2.2.3 2-to-1 Multiplexer with Quarter-Rate Feed-Forward Equalizer 8 2.2.4 Timing Issue 11 2.2.5 PAM-4 Signal Combiner 13 2.2.6 Four Parallel PRBS-7 Pattern Generator 14 2.3 Measurement 17 2.3.1 Measurement Setup 17 2.3.2 Measurement Result 18 2.4 Conclusion and Future Works 22 3 25/28Gb/s Burst-Mode Receiver 25 3.1 Passive Optical Network 25 3.2 Design Targets 26 3.3 Burst-Mode RX Architecture 27 3.4 Burst-Mode Front End 29 3.4.1 Limiting Amplifiers and Equalizers 31 3.4.2 Comparator, Counter logic, and DAC 33 3.5 Burst-Mode CDR 34 3.5.1 Mixer-type Phase Detector, Delay Calibration Circuits, and V/I Converter 36 3.5.2 VCO, and PFD 39 3.5.3 VCO/Band Selection 43 3.5.4 Loop Bandwidth of CDR 45 3.5.5 Data Detection and PLL Locking Detection 47 3.5.6 Feed-Forward Equalizer and Output Combiner 48 3.6 Measurement 49 3.6.1 Measurement Setup for Electrical Signal 50 3.6.2 Measurement Result of Electrical Signal 52 3.6.3 Measurement Setup for Optical Signal 55 3.6.4 Measurement Result of Optical Signal 55 3.6.5 JTOL of Burst/Continuous mode 57 3.6.6 Performance and Comparison Table 58 3.7 Conclusion and Future Works 59 References 61 | |
dc.language.iso | en | |
dc.title | 乙太網路應用之高速收發器 | zh_TW |
dc.title | High-Speed Transceivers for Ethernet Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳中平,謝秉璇,劉宗德,彭朋瑞 | |
dc.subject.keyword | 發送器,佔空比控制,組合器,時鐘和數據恢復電路,突發模式,連續相同的數字, | zh_TW |
dc.subject.keyword | transmitter,duty-cycle control,combiner,clock and data recovery circuit(CDR),burst mode,consecutive identical digits(CID), | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201904247 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-11-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 12.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。