Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21151Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉?睿(Je-Ruei Liu) | |
| dc.contributor.author | You-Jia Chen | en |
| dc.contributor.author | 陳又嘉 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:27:47Z | - |
| dc.date.copyright | 2019-12-02 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-11-27 | |
| dc.identifier.citation | 衛生福利部(2015)。康食品之延緩衰老保健功效評估方法。台北市:衛生福利部。衛生福利部(2017)。台灣中藥典第三版。台北市:衛生福利部。
衛生福利部(2018)。中華民國 106 年老人狀況調查報告。台北市:衛生福利部。 黃晨瑀(2018)。中草藥及其芽孢桿菌發酵產物之抗氧化和抗衰老功效。國立臺灣大學動物科學技術學研究所碩士論文,台北市。 Acosta, P. B., and K. C. Gross. 1995. Hidden sources of galactose in the environment. Eur J Pediatr 154(7 Suppl 2):87-92. Additives, E. P. o., and P. o. S. u. i. A. Feed. 2014. Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA Journal 12(5):3665-3675. Adeniji, A. A., D. T. Loots, and O. O. Babalola. 2019. Bacillus velezensis: Phylogeny, useful applications, and avenues for exploitation. Appl Microbiol Biotechnol 103(9):3669-3682. Adewumi, G. A., F. A. Oguntoyinbo, W. Romi, T. A. Singh, and K. Jeyaram. 2014. Genome subtyping of autochthonous Bacillus species isolated from Iru, a fermented Parkia biglobosa seed. Food Biotechnology 28(3):250-268. Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, C. S. Kyriakis, A. Govaris, and S. C. Kyriakis. 2004. Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J Vet Med A Physiol Pathol Clin Med 51(6):306-312. Ali, T., H. Badshah, T. H. Kim, and M. O. Kim. 2015. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-κB/JNK signaling pathway in aging mouse model. J Pineal Res 58(1):71-85. Ayala, F. R., C. Bauman, S. Cogliati, C. Lenini, M. Bartolini, and R. Grau. 2017. Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microb Cell 4(4):133-136. Bai, K., C. Feng, L. Jiang, L. Zhang, J. Zhang, L. Zhang, and T. Wang. 2018. Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poult Sci 97(7):2312-2321. Balaban, R. S., S. Nemoto, and T. Finkel. 2005. Mitochondria, oxidants, and aging. Cell 120(4):483-495. Chainy, G. B., B. Paital, and J. Dandapat. 2016. An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica (Cairo) 2016:6126570. Chen, Y., Y. Zhang, L. Li, and C. Holscher. 2015. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson's disease. Eur J Pharmacol 768:21-27. Coelho, A. I., G. T. Berry, and M. E. Rubio-Gozalbo. 2015. Galactose metabolism and health. Curr Opin Clin Nutr Metab Care 18(4):422-427. Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol 28(2):214-220. de Cabo, R., D. Carmona-Gutierrez, M. Bernier, M. N. Hall, and F. Madeo. 2014. The search for antiaging interventions: From elixirs to fasting regimens. Cell 157(7):1515-1526. Dunlap, C. A., S. J. Kim, S. W. Kwon, and A. P. Rooney. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66(3):1212-1217. Elshaghabee, F. M. F., N. Rokana, R. D. Gulhane, C. Sharma, and H. Panwar. 2017. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front Microbiol 8:1490-1505. Fan, B., J. Blom, H. P. Klenk, and R. Borriss. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an 'operational group B. amyloliquefaciens' within the B. subtilis species complex. Front Microbiol 8:22-37. Fan, B., C. Wang, X. Song, X. Ding, L. Wu, H. Wu, X. Gao, and R. Borriss. 2018. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491-2505. Fijan, S. 2014. Microorganisms with claimed probiotic properties: An overview of recent literature. Int J Environ Res Public Health 11(5):4745-4767. Fougere, B., E. Boulanger, F. Nourhashemi, S. Guyonnet, and M. Cesari. 2017. Chronic inflammation: Accelerator of biological aging. J Gerontol A Biol Sci Med Sci 72(9):1218-1225. Frimat, M., M. Daroux, R. Litke, R. Neviere, F. J. Tessier, and E. Boulanger. 2017. Kidney, heart and brain: Three organs targeted by ageing and glycation. Clin Sci (Lond) 131(11):1069-1092. Fujikawa, S., S. Nakamura, K. Koga, and J. Kumada. 1987. Continuous blue pigment formation by Gardenia fruit using immobilized growing-cells. J Ferment Bioeng 65(6):711-715. Gao, Y., C. Li, B. Chen, Y. H. Shen, J. Han, and M. G. Zhao. 2016. Anti-hyperlipidemia and antioxidant activities of Amygdalus pedunculata seed oil. Food Funct 7(12):5018-5024. Grossin, N., F. Auger, C. Niquet-Leridon, N. Durieux, D. Montaigne, A. M. Schmidt, S. Susen, P. Jacolot, J. B. Beuscart, F. J. Tessier, and E. Boulanger. 2015. Dietary CML-enriched protein induces functional arterial aging in a RAGE-dependent manner in mice. Mol Nutr Food Res 59(5):927-938. Guan, L., H. Feng, D. Gong, X. Zhao, L. Cai, Q. Wu, B. Yuan, M. Yang, J. Zhao, and Y. Zou. 2013. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. Exp Gerontol 48(12):1387-1394. Harman, D. 1956. Aging: A theory based on free radical and radiation chemistry. J Gerontol 11(3):298-300. He, M. L., X. W. Cheng, J. K. Chen, and T. S. Zhou. 2006. Simultaneous determination of five major biologically active ingredients in different parts of Gardenia jasminoides fruits by HPLC with diode-array detection. Chromatographia 64(11-12):713-717. (Article) Hsieh, H. M., W. M. Wu, and M. L. Hu. 2009. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 47(3):625-632. Hu, Y., Y. Dun, S. Li, S. Zhao, N. Peng, and Y. Liang. 2014. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian-Australas J Anim Sci 27(8):1131-1140. Huang, J., X. Q. Lu, C. Zhang, J. Lu, G. Y. Li, R. C. Lin, and J. H. Wang. 2013. Anti-inflammatory ligustilides from Ligusticum chuanxiong hort. Fitoterapia 91:21-27. Hur, S. J., S. Y. Lee, Y. C. Kim, I. Choi, and G. B. Kim. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346-356. Hussain, A., S. Bose, J. H. Wang, M. K. Yadav, G. B. Mahajan, and H. Kim. 2016. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res. Int. 81:1-16. Ighodaro, O. M., and O. A. Akinloye. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287-293. Jiang, W. Y. 2005. Therapeutic wisdom in traditional Chinese medicine: A perspective from modern science. Trends Pharmacol Sci 26(11):558-563. Khochamit, N., S. Siripornadulsil, P. Sukon, and W. Siripornadulsil. 2015. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: Potential as a probiotic strain. Microbiol Res 170:36-50. Kong, S. Z., J. C. Li, S. D. Li, M. N. Liao, C. P. Li, P. J. Zheng, M. H. Guo, W. X. Tan, Z. H. Zheng, and Z. Hu. 2018. Anti-aging effect of chitosan oligosaccharide on D-galactose-induced subacute aging in mice. Mar Drugs 16(6):181-194 Kotb, E. 2015. Purification and partial characterization of serine fibrinolytic enzyme from Bacillus megaterium KSK-07 isolated from kishk, a traditional egyptian fermented food. Applied Biochemistry and Microbiology 51(1):34-43. Koutsoumanis, K., A. Allende, A. Alvarez-Ordonez, D. Bolton, S. Bover-Cid, M. Chemaly, R. Davies, F. Hilbert, R. Lindqvist, M. Nauta, L. Peixe, G. Ru, M. Simmons, P. Skandamis, E. Suffredini, P. S. Cocconcelli, P. S. F. Escamez, M. P. Maradona, A. Querol, J. E. Suarez, I. Sundh, J. Vlak, F. Barizzone, S. Correia, L. Herman, and E. P. B. Hazards. 2019. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to ESFA 9: Suitability of taxonomic units notified to ESFA until september 2018. EFSA Journal 17(1):5555-5601. Kowalski, Z. M., P. Gorka, A. Schlagheck, W. Jagusiak, P. Micek, and J. Strzetelski. 2009. Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J Anim Feed Sci 18(3):399-411. Li, C., Z. Mo, J. Xie, L. Xu, L. Tan, D. Luo, H. Chen, H. Yang, Y. Li, Z. Su, and Z. Su. 2016. Chongcao-Shencha attenuates liver and kidney injury through attenuating oxidative stress and inflammatory response in D-galactose-treated mice. Evid Based Complement Alternat Med 2016:3878740. Li, L., C. L. Xu, C. Ji, Q. Ma, K. Hao, Z. Y. Jin, and K. Li. 2006. Effects of a dried Bacillus subtilis culture on egg quality. Poult Sci 85(2):364-368. Liang, F., L. Li, M. Wang, X. Niu, J. Zhan, X. He, C. Yu, M. Jiang, and A. Lu. 2013. Molecular network and chemical fragment-based characteristics of medicinal herbs with cold and hot properties from Chinese medicine. J Ethnopharmacol 148(3):770-779. Liu, J., F. Yin, X. Zheng, J. Jing, and Y. Hu. 2007. Geniposide, a novel agonist for glp-1 receptor, prevents PC12 cells from oxidative damage via map kinase pathway. Neurochem Int 51(6-7):361-369. Lv, C., L. Wang, X. Liu, S. Yan, S. S. Yan, Y. Wang, and W. Zhang. 2015. Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology 89:175-184. Lv, S., Y. Ding, H. Zhao, S. Liu, J. Zhang, and J. Wang. 2018. Therapeutic potential and effective components of the Chinese herb Gardeniae fructus in the treatment of senile disease. Aging Dis 9(6):1153-1164. Markowiak, P., and K. Slizewska. 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog 10:21. Mercken, E. M., B. A. Carboneau, S. M. Krzysik-Walker, and R. de Cabo. 2012. Of mice and men: The benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11(3):390-398. Mingmongkolchai, S., and W. Panbangred. 2018. Bacillus probiotics: An alternative to antibiotics for livestock production. J Appl Microbiol 124(6):1334-1346. Muluye, R. A., Y. Bian, and P. N. Alemu. 2014. Anti-inflammatory and antimicrobial effects of heat-clearing Chinese herbs: A current review. J Tradit Complement Med 4(2):93-98. Neri-Numa, I. A., M. G. Pessoa, B. N. Paulino, and G. M. Pastore. 2017. Genipin: A natural blue pigment for food and health purposes. Trends Food Sci Tech 67:271-279. Park, M. R., S. Oh, S. J. Son, D. J. Park, S. Oh, S. H. Kim, D. Y. Jeong, N. S. Oh, Y. Lee, M. Song, and Y. Kim. 2015. Bacillus licheniformis isolated from traditional korean food resources enhances the longevity of Caenorhabditis elegans through serotonin signaling. J Agric Food Chem 63(47):10227-10233. Parvez, S., K. A. Malik, S. Ah Kang, and H. Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171-1185. Pham, T. Q., F. Cormier, E. Farnworth, V. H. Tong, and M. R. Van Calsteren. 2000. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem 48(5):1455-1461. Rabbee, M. F., M. S. Ali, J. Choi, B. S. Hwang, S. C. Jeong, and K. H. Baek. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24(6) Rao, K. P., G. Chennappa, U. Suraj, H. Nagaraja, A. P. Raj, and M. Y. Sreenivasa. 2015. Probiotic potential of Lactobacillus strains isolated from sorghum-based traditional fermented food. Probiotics Antimicrob Proteins 7(2):146-156. Roca, F., N. Grossin, P. Chassagne, F. Puisieux, and E. Boulanger. 2014. Glycation: The angiogenic paradox in aging and age-related disorders and diseases. Ageing Res Rev 15:146-160. Ruiz-Garcia, C., V. Bejar, F. Martinez-Checa, I. Llamas, and E. Quesada. 2005. Bacillus velezensis sp nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int J Syst Evol Micr 55:191-195. Saha, S. K., S. B. Lee, J. Won, H. Y. Choi, K. Kim, G. M. Yang, A. A. Dayem, and S. G. Cho. 2017. Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci 18(7):1554-1584 Sen, S., S. L. Ingale, Y. W. Kim, J. S. Kim, K. H. Kim, J. D. Lohakare, E. K. Kim, H. S. Kim, M. H. Ryu, I. K. Kwon, and B. J. Chae. 2012. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res Vet Sci 93(1):264-268. Shan, M., S. Yu, H. Yan, S. Guo, W. Xiao, Z. Wang, L. Zhang, A. Ding, Q. Wu, and S. F. Y. Li. 2017. A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules 22(10):1689-1718. Shwe, T., W. Pratchayasakul, N. Chattipakorn, and S. C. Chattipakorn. 2018. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 101:13-36. Sies, H., and E. Cadenas. 1985. Oxidative stress: Damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311(1152):617-631. Sohal, R. S., and W. C. Orr. 2012. The redox stress hypothesis of aging. Free Radic Biol Med 52(3):539-555. Song, X., M. Bao, D. Li, and Y. M. Li. 1999. Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108(3):239-251. Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, and G. Munch. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease. Neurobiol Aging 32(5):763-777. Stinghen, A. E., Z. A. Massy, H. Vlassara, G. E. Striker, and A. Boullier. 2016. Uremic toxicity of advanced glycation end products in CKD. J Am Soc Nephrol 27(2):354-370. Sun, P., J. Q. Wang, and H. T. Zhang. 2010. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J Dairy Sci 93(12):5851-5855. Tamang, J. P., D. H. Shin, S. J. Jung, and S. W. Chae. 2016. Functional properties of microorganisms in fermented foods. Front Microbiol 7:578-591. Tidjiani Alou, M., J. Rathored, S. Khelaifia, C. Michelle, S. Brah, B. A. Diallo, D. Raoult, and J. C. Lagier. 2015. Bacillus rubiinfantis sp. nov. strain mt2(T), a new bacterial species isolated from human gut. New Microbes New Infect 8:51-60. Tsai, S. J., and M. C. Yin. 2012. Anti-oxidative, anti-glycative and anti-apoptotic effects of oleanolic acid in brain of mice treated by D-galactose. Eur J Pharmacol 689(1-3):81-88. Tu, D. G., Y. L. Chang, C. H. Chou, Y. L. Lin, C. C. Chiang, Y. Y. Chang, and Y. C. Chen. 2018. Preventive effects of taurine against D-galactose-induced cognitive dysfunction and brain damage. Food Funct 9(1):124-133. Turgut, N. H., D. G. Mert, H. Kara, H. R. Egilmez, E. Arslanbas, B. Tepe, H. Gungor, N. Yilmaz, and N. B. Tuncel. 2016. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D-galactose-induced aging mice. Pharm Biol 54(6):1052-1064. Ung, C. Y., H. Li, C. Y. Kong, J. F. Wang, and Y. Z. Chen. 2007. Usefulness of traditionally defined herbal properties for distinguishing prescriptions of traditional Chinese medicine from non-prescription recipes. J Ethnopharmacol 109(1):21-28. Vorhees, C. V., and M. T. Williams. 2006. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848-858. Wang, L., G. Wu, F. Wu, N. Jiang, and Y. Lin. 2017a. Geniposide attenuates ANTI-induced cholestasis through regulation of transporters and enzymes involved in bile acids homeostasis in rats. J Ethnopharmacol 196:178-185. Wang, L. T., F. L. Lee, C. J. Tai, and H. Kasai. 2007. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57(Pt 8):1846-1850. Wang, L. T., F. L. Lee, C. J. Tai, and H. P. Kuo. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol 58(Pt 3):671-675. Wang, Y., Y. Wu, Y. Wang, A. Fu, L. Gong, W. Li, and Y. Li. 2017b. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl Microbiol Biotechnol 101(7):3015-3026. Wei, H., L. Li, Q. Song, H. Ai, J. Chu, and W. Li. 2005. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res 157(2):245-251. Xu, B., Y. L. Li, M. Xu, C. C. Yu, M. Q. Lian, Z. Y. Tang, C. X. Li, and Y. Lin. 2017. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacol Sin 38(5):688-698. Yang, J., K. Qian, W. Zhang, Y. Xu, and Y. Wu. 2016. Effects of chromium-enriched Bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Lipids Health Dis 15(1):188. Ye, M., X. F. Tang, R. Yang, H. F. Zhang, F. S. Li, F. Z. Tao, F. Li, and Z. G. Wang. 2018. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. Acs Chem Biol 13(3):500-505. Yin, F., and J. H. Liu. 2018. Research and application progress of Gardenia jasminoides. Chin Herb Med 10(4):362-370. Zhang, X., J. Z. Wu, Z. X. Lin, Q. J. Yuan, Y. C. Li, J. L. Liang, J. Y. Zhan, Y. L. Xie, Z. R. Su, and Y. H. Liu. 2019. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnen against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. J Ethnopharmacol 234:44-56. Zhang, Y., Y. Ding, X. Zhong, Q. Guo, H. Wang, J. Gao, T. Bai, L. Ren, Y. Guo, X. Jiao, and Y. Liu. 2016. Geniposide acutely stimulates insulin secretion in pancreatic beta-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol Cell Endocrinol 430:89-96. Zhang, Y., Y. Liang, and C. He. 2017. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 12:20-35. Zhang, Z. F., S. H. Fan, Y. L. Zheng, J. Lu, D. M. Wu, Q. Shan, and B. Hu. 2009. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J Agric Food Chem 57(17):7731-7736. Zhao, C., H. Zhang, H. Li, C. Lv, X. Liu, Z. Li, W. Xin, Y. Wang, and W. Zhang. 2017. Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle-aged Alzheimer model mice. Neuropharmacology 116:18-29. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21151 | - |
| dc.description.abstract | 梔子(Gardenia jasminoides Ellis, GJE)為一種清熱解毒的中藥材,具有抗氧化、抗發炎、護肝、保護神經等多種功效;根據先前實驗室對梔子的研究結果發現,將梔子以實驗室分離出來的菌Bacillus sp. AC發酵後,其對於1,1-二苯基-2-三硝基苯肼自由基與氫氧自由基的清除能力,皆較未發酵的梔子高;將發酵後梔子共處理於老化之人類胚肺細胞(MRC-5)後,也提高了細胞抗氧化酵素的活性。本論文的目的為接續先前細胞實驗結果,將發酵後梔子實驗進行D-半乳糖誘導氧化傷害之動物模式評估。在AC菌種的鑑定實驗中,以持家基因DNA gyrase subunit B(gyrB)畫出的親緣關係樹得知,AC與Bacillus velezensis的親緣關係較為相近,而經梔子經AC發酵後,梔子中指標成分梔子苷的含量與發酵前相比顯著下降。動物實驗則採用過量注射D-半乳糖的方式誘導小鼠產生氧化傷害;第一批實驗使用BALB/c小鼠,以每kg體重每天注射300 mg的D-半乳糖誘導小鼠產生氧化傷害,並分別同時管餵水、LB Broth、AC菌液、梔子液(發酵前每kg體重小鼠每天可攝取到40 mg之梔子苷含量)或梔子發酵液,探討發酵梔子對於延緩D-半乳糖誘導氧化傷的效果。在氧化指標測定項目中,血清丙二醛濃度於10周處理後,負控制組與誘導氧化控制組間有顯著差異,但管餵發酵梔子的組別與誘導氧化控制組間沒有統計上的差異,而其他氧化傷害指標,如水迷宮試驗、肝臟中過氧化氫酶及穀胱甘肽酶活性、肝臟中丙二醛含量,以及腦部丙二醛含量的數值,於負控制組、誘導氧化控制組,以及各個處理組間皆沒有顯著差異。基於推測此批小鼠誘導氧化傷害的狀況並不顯著,之後實驗的試驗設計參考先前文獻,改以C57BL/6小鼠進行第二批動物實驗。第二批以C57BL/6進行的試驗中,每kg小鼠每天注射200 mg之D-半乳糖溶液誘導小鼠產生氧化傷害;經過10周的誘導後,肝臟中超氧化物歧化酶活性於負控制組與誘導氧化控制組間有顯著差異,但管餵發酵梔子的組別與誘導氧化控制組間沒有統計上的差異;而其他氧化傷害指標,如水迷宮試驗、血清及腦中丙二醛含量、肝臟及腦中過氧化氫酶及穀胱甘肽酶活性,以及腦中超氧化物歧化酶活性於各個處理組間,皆沒有顯著差異。綜合以上兩批小鼠的實驗結果,D-半乳糖誘導氧化傷害的過程於兩批動物實驗效果皆不顯著,而推測造成此狀況的原因為D-半乳糖誘導劑量不足所致;因此,之後若要以此誘導模式再次進行試驗,需先做多個不同的誘導條件,以測試出D-半乳糖於實驗環境中的有效劑量,亦或是換一種老化老鼠模型,待建立出條件可行的模式後,再進行發酵梔子的抗氧化或是抗老化實驗。 | zh_TW |
| dc.description.abstract | Gardenia jasminoides (GJE) is a kind of traditional Chinese herbal medicine (CHM) which is known for its anti-oxidative, anti-inflammatory, and neuroprotective characteristics. In a previous in vitro study, fermented GJE showed greater anti-oxidant ability than unfermented GJE through 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and deoxyribose radical assays. Treated premature-senescence of MRC-5 cell with fermented GJE also increased the antioxidant enzymes activity of cell. The objective of this study is to investigate the in vivo anti-aging property of GJE fermented with Bacillus sp. AC. The species of AC closed related to Bacillus velezensis through phylogenic tree built up by DNA gyrase subunit B (gyrB). The geniposide content of Gardenia jasminoides decreased significantly after fermented with AC. In the first trial of in vivo test, male BALB/c mice were subcutaneously injected daily with D-galactose (300 mg/kg of body weight) to mimic the oxidative damage of mice. Mice were orally administrated with either water, LB broth, AC, GJE (containing 40 mg/kg body weight of geniposide before fermentation) or fermented GJE at the same time. After 10 weeks of treatments, the level of serum malondialdehyde (MDA) in control group showed significantly different compared with D-galactose induced oxidative control group. However, orally administrated with fermented GJE showed no significantly different compared with D-galactose induced oxidative control group. In addition, several aging markers had no significant difference among all the treatment groups. Since the failure of the oxidative damage induced process had been assumed, I altered some experimental processes according to previous studies. In the second trial of in vivo test, male C57BL/6 mice were adopted in this experiment. Mice were subcutaneously injected daily with D-galactose (200 mg/kg of body weight) for 10 weeks. Although the SOD activity of liver in control group increased significantly compared with D-galactose induced oxidative damage group, there was no significant difference among all the groups in other aging biomarkers. In conclusion, I assumed that the D-galactose induced oxidative damage processes fail in both trails. In order to establish the effective model of mice, further experiments will be needed to investigate the adequate volume of D-galactose to induce the oxidative damage process, or change another effective aging model, to investigate the alleviation effective of fermented GJE. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:27:47Z (GMT). No. of bitstreams: 1 ntu-108-R06642006-1.pdf: 8344153 bytes, checksum: 54d00d2ef36557f48925150d684e10d5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 目錄 vi 圖目錄 viii 表目錄 x 第一章、 文獻探討 1 第一節、老化 1 一、老化所帶來的問題 1 二、老化學說 1 三、半乳糖誘發氧化壓力動物模式 6 第二節、益生菌 11 一、益生菌定義及鑑定 11 二、芽孢桿菌簡介與應用 11 三、芽孢桿菌於畜產界的應用 12 四、芽孢桿菌的抗氧化及抗老化 13 五、貝萊斯芽孢桿菌Bacillus velezensis 14 第三節、梔子 19 一、中草藥 19 二、清熱解毒的中草藥 19 三、梔子的功效及成分 22 四、梔子抗氧化及抗老化潛力 23 五、中草藥發酵 23 第四節、實驗目的 24 第二章、 材料與方法 27 第一節、實驗架構 27 第二節、菌種鑑定分析 28 一、生長曲線 28 二、API®50 CHB生化套組測試 28 三、親緣關係樹繪製 29 第三節、BALB/c小鼠之D-半乳糖誘導氧化傷害測試 31 一、發酵中草藥製備 31 二、D-半乳糖誘導氧化傷害之BALB/c小鼠試驗設計 33 三、空間記憶行為測驗 35 四、D-半乳糖誘導氧化傷害指標分析 36 五、血清生化數值分析 36 第四節、C57BL/6小鼠之D-半乳糖誘導氧化傷害測試 37 一、發酵中草藥製備 37 二、D-半乳糖誘導氧化傷害之C57BL/6小鼠試驗設計 38 三、空間記憶行為測驗 39 四、D-半乳糖誘導氧化傷害指標分析 40 五、血清生化數值分析 41 第五節、統計分析 42 第三章、結果 43 第一節、以API®50 CHB商業套組及親緣關係樹進行Bacillus sp. AC之菌種鑑定 43 第二節、梔子發酵液於BALB/c小鼠體內之D-半乳糖誘導氧化傷害評估 48 一、梔子液發酵前後之梔子苷含量分析 48 二、以BALB/c小鼠進行之D-半乳糖誘導氧化傷害實驗 51 第三節、梔子發酵液於C57BL/6小鼠之D-半乳糖誘導氧化傷害評估 61 一、梔子液發酵前後及冷凍乾燥後之梔子苷含量分析 61 二、以C57BL/6小鼠進行之D-半乳糖誘導氧化傷害實驗 64 第四章、討論 72 第一節、菌種鑑定結果 72 第二節、梔子發酵後變化 73 一、梔子苷含量降低 73 二、與先前細胞實驗中梔子發酵條件的不同處 74 第三節、小鼠於D-半乳糖誘導氧化壓力試驗結果 76 一、血清生化數值與器官體重比數值比較 76 二、氧化傷害指標數值比較 77 三、推測誘導狀況不顯著的原因 77 第五章、結論 79 第六章、參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 貝萊斯芽孢桿菌 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | D-半乳糖誘導氧化傷害 | zh_TW |
| dc.subject | 梔子 | zh_TW |
| dc.subject | 梔子? | zh_TW |
| dc.subject | D-galactose | en |
| dc.subject | Gardenia jasminoides | en |
| dc.subject | Bacillus velenzenssis | en |
| dc.subject | oxidative stress | en |
| dc.title | 芽孢桿菌發酵梔子對D-galactose誘導氧化傷害小鼠之評估 | zh_TW |
| dc.title | Study of Bacillus fermented Gardenia jasminoides on D-galactose induced oxidative damage in mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李滋泰(Tzu-Tai Lee),鄭光成(Kuan-Chen Cheng),陳億乘(Yi-Chen chen) | |
| dc.subject.keyword | 梔子,梔子?,貝萊斯芽孢桿菌,氧化壓力,D-半乳糖誘導氧化傷害, | zh_TW |
| dc.subject.keyword | D-galactose,oxidative stress,Gardenia jasminoides,Bacillus velenzenssis, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU201803854 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-11-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| Appears in Collections: | 生物科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 8.15 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
