Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉(Hsin-Chia Lu)
dc.contributor.authorChia-Jen Linen
dc.contributor.author林家任zh_TW
dc.date.accessioned2021-06-08T03:27:43Z-
dc.date.copyright2019-12-03
dc.date.issued2019
dc.date.submitted2019-12-02
dc.identifier.citation[1] National Instruments. Introduction of millimeter wave [Online]. Available: https://www.ni.com/zh-tw/innovations/white-papers/16/mmwave--the-battle-of-the-bands.html
[2] B. Razavi, RF Microelectronics, Second ed. Paul Boger, 2011.
[3] S. Kulhalli, S. Seth, and S.-T. Fu, 'An integrated linear RF power detector,' in IEEE International Symposium on Circuits and Systems, May 2004, vol. 1, pp. 625-628.
[4] J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, and T. S. Rappaport, 'A 38 GHz cellular outage study for an urban outdoor campus environment,' in 2012 IEEE wireless communications and networking conference (WCNC), Jun. 2012, pp. 3085-3090.
[5] S. Rubin, 'A wide-band UHF logarithmic amplifier,' IEEE Journal of Solid-State Circuits, vol. 1, no. 2, pp. 74-81, Dec. 1966.
[6] N. Scheinberg and R. Michels, 'A monolithic GaAs low power L-band successive detection logarithmic amplifier,' IEEE journal of solid-state circuits, vol. 29, no. 2, pp. 151-154, Feb. 1994.
[7] D. Yoon, K. Song, J. Kim, and J.-S. Rieh, 'Si-based sub-THz heterodyne imaging circuits,' in 2014 Asia-Pacific Microwave Conference, Nov. 2014, pp. 1136-1138.
[8] B. Moret, E. Kerherve, and V. Knopik, 'Non-invasive highly integrated transformer power detector for self-healing PA in 130nm H9SOI-FEM CMOS technology,' in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), Oct. 2016, pp. 113-116.
[9] D. M. Pozar, Microwave Engineering, 4th ed. John Wiley & Sons, 2011.
[10] F. Friederich, W. Von Spiegel, M. Bauer, F. Meng, M. D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, and A. Keil, 'THz active imaging systems with real-time capabilities,' IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 183-200, Aug. 2011.
[11] M. B. Dinc, 'Design and fabrication of a detector logarithmic video amplifier.,' Natural and Applied Sciences of Middle East Technical University, Turkey, 2011.
[12] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, 'A 38 GHz low power variable gain LNA using PMOS current-steering device and G m-boost technique,' in 2018 Asia-Pacific Microwave Conference (APMC), Nov. 2018, pp. 654-656.
[13] K. Kim and Y. Kwon, 'A broadband logarithmic power detector in 0.13-μm CMOS,' IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 498-500, Sep. 2013.
[14] E. Ozeren, I. Kalyoncu, B. Ustundag, B. Cetindogan, H. Kayahan, M. Kaynak, and Y. Gurbuz, 'A high dynamic range power detector at X-band,' IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 708-710, Aug. 2016.
[15] A. Serhan, E. Lauga-Larroze, and J.-M. Fournier, 'Common-base/common-gate millimeter-wave power detectors,' IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4483-4491, Nov. 2015.
[16] I. Filanovsky and H. Baltes, 'CMOS Schmitt trigger design,' IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 1, pp. 46-49, Jan. 1994.
[17] J.-W. Wu, K.-C. Hsu, W.-J. Lai, C.-H. To, S.-W. Chen, C.-W. Tang, and Y.-Z. Juang, 'A linear-in-dB radio-frequency power detector,' in 2011 IEEE MTT-S International Microwave Symposium, Jun. 2011, pp. 1-4.
[18] J. Choi, J. Lee, Y. Xi, S.-S. Myoung, S. Baek, D. H. Kwon, Q.-D. Bui, J. Lee, D. Oh, and T. B. Cho, 'Wide dynamic-range CMOS RMS power detector,' IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 868-880, Feb. 2016.
[19] C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, '60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,' IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1635-1643, Mar. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21146-
dc.description.abstract本論文主要研究毫米波頻段相關功率量測電路,操作頻率在28 GHz,為第五代通訊系統所適用之Ka頻段。首先將介紹傳統功率量測電路架構以及毫米波頻段功率量測系統相關文獻,接著介紹其中電路之架構、原理及應用目的,最後介紹本論文所提出兩種訊號偵測系統。
本論文提出之第一個電路為透過開關切換兩路平行式的 Ka頻段功率量測系統,使用台積電90nm CMOS製程,晶片面積為0.9mm x 0.49 mm,系統將輸入射頻訊號轉為輸出直流電壓。利用兩路平行架構,第一路搭載可變增益放大器串接共閘極功率偵測器,可量測到較小功率。第二路搭載單一共閘極功率偵測器,可量測到較大功率,並藉由開關控制訊號路徑,提升功率量測範圍及靈敏度,並偵測更小功率訊號。本偵測系統於28GHz下及線性誤差為1dB以下時,可量測-33.6 dBm至7.4 dBm訊號,頻寬為2GHz,靈敏度最高為46.8 mV/dB,靜態直流功耗為34 mW。
本論文提出之第二個電路為應用自動增益控制放大器之Ka頻段功率量測系統,使用台積電180nm CMOS製程,晶片面積為1.05mm x 0.685 mm,系統將輸入射頻功率轉為輸出直流電壓,利用單一共閘極整流器串接三態可變增益放大器,並藉由兩組比較器根據輸入訊號控制可變增益放大器之增益,實現自動切換輸入輸出轉移曲線,提高實用性、偵測範圍及靈敏度,並偵測更小輸入訊號。本偵測系統於28GHz下及線性誤差為1dB以下時,可偵測-47.2 dBm至-5.7 dBm訊號,頻寬為2 GHz,靈敏度最高為41.4 mV/dB,靜態直流功耗為35 mW。
本論文採用Keysight Advanced Design System (ADS)軟體進行電路模擬,被動走線及其他元件之電磁響應模擬則使用Sonnet軟體。晶片量測與模擬結果大致吻合,模擬修正及結果討論將分別於第四章及第五章探討。
zh_TW
dc.description.abstractThis thesis presents two power detectors in Ka-band for 5G communication and they are proposed to measure power in real-time for the wireless communication system.
The first chip in this thesis uses a parallel structure which converts input RF power to output dc voltage. This chip is fabricated in TSMC 90-nm CMOS process and the chip size is 0.9 mm x 0.49 mm. The proposed power detection system uses a switch to switch between two paths. One path has amplifier with common gate power detector for power detection of small input power, while the other path has only one common gate power detector for large input power detection. With switch control, we can realize wide dynamic range, low detected power, and excellent sensitivity. The measured dynamic range is from -33.6 dBm to 7.4 dBm at 28GHz, with 2GHz bandwidth under 1dB log-error. The dc power consumption is 34 mW with supplied voltage at 1.2V.
The second chip has a automatic gain switch amplifier which also converts input RF power to output dc voltage. This chip is fabricated in TSMC 180-nm CMOS process and the chip size is 1.05 mm x 0.685 mm. The proposed power detect system consists of four variable gain amplifiers and common gate power detector in series. Variable gain amplifier is controlled by comparator based on output dc voltage. With variable gain amplifiers, we can achieve wide dynamic range, low detected power, and excellent sensitivity. The measured dynamic range is from -47.2 dBm to -5.7 dBm at 28GHz, with 2 GHz bandwidth under 1dB log-error. The dc power consumption is 35 mW with supplied voltage 1.8V.
The chips proposed in this thesis were designed by using Keysight ADS and Sonnet for the circuit and EM simulation. The measurement results fit well with the simulation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:27:43Z (GMT). No. of bitstreams: 1
ntu-108-R06943047-1.pdf: 8273932 bytes, checksum: bfabe2911caeed3efee160861dd385de (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURE vii
LIST OF TABLES xiii
Chapter 1 簡介 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 傳統功率偵測架構 4
1.2.2 射頻外差功率偵測系統 5
1.2.3 對數功率偵測系統 5
1.3 論文貢獻 6
1.4 各章節重點介紹 8
Chapter 2 功率偵測器概論 10
2.1 簡介 10
2.2 功率偵測器特性參數介紹 10
2.2.1 線性度及線性誤差 11
2.2.2 最低可偵測功率 11
2.2.3 動態範圍 12
2.2.4 靈敏度 12
2.2.5 輸入增益壓縮點 12
2.3 功率偵測電路架構介紹 14
2.3.1 傳統二極體功率偵測電路 14
2.3.2 射頻超外差功率偵測電路架構 15
2.3.3 對數功率偵測電路架構 16
2.3.4 可切換功率偵測電路架構 18
2.4 可變增益放大器介紹 19
2.4.1 偏壓調控可變增益放大器 19
2.4.2 N型電流導向可變增益放大器 20
2.4.3 P型電流導向可變增益放大器 22
2.5 功率偵測器 24
2.5.1 共源極回授源極退化對數功率偵測器 24
2.5.2 電晶體負載式疊接功率偵測器 25
2.5.3 毫米波共閘極功率偵測器 27
2.6 比較器 30
2.6.1 施密特觸發器 30
Chapter 3 功率偵測電路設計 32
3.1 簡介 32
3.2 設計流程 32
3.3 28 GHz平行式之可切換功率偵測系統 33
3.3.1 規格制訂 33
3.3.2 電路架構 34
3.3.3 二階電感電容四分之一波長開關 35
3.3.4 共閘極功率偵測器 38
3.3.5 可變增益放大器 43
3.3.6 28 GHz平行式之可切換功率偵測系統 49
3.3.7 電路佈局 54
3.3.8 特性比較 55
3.4 28 GHz 自動切換功率偵測系統 56
3.4.1 規格制訂 56
3.4.2 電路架構 57
3.4.3 共閘級功率偵測器 59
3.4.4 可變增益放大器 63
3.4.5 施密特觸發比較器 74
3.4.6 28 GHz 自動切換功率偵測系統 78
3.4.7 電路佈局 83
3.4.8 特性比較 84
Chapter 4 量測結果 85
4.1 印刷電路板設計 85
4.2 28GHz平行式之可切換功率偵測系統量測 86
4.2.1 晶片與外焊電容 86
4.2.2 量測環境 88
4.2.3 S參數 88
4.2.4 輸入輸出轉移曲線 90
4.2.5 直流功耗 94
4.2.6 電路特性比較 95
4.2.7 模擬修正 96
4.3 28 GHz自動切換功率偵測系統量測 100
4.3.1 晶片與外焊電容 100
4.3.2 量測環境 102
4.3.3 S參數 102
4.3.4 輸入輸出轉換曲線 103
4.3.5 切換速度 107
4.3.6 直流功耗 109
4.3.7 電路特性比較 109
4.3.8 模擬修正 110
Chapter 5 結論 115
參考文獻 117
dc.language.isozh-TW
dc.subject毫米波zh_TW
dc.subject功率偵測電路zh_TW
dc.subject自動增益調變放大器zh_TW
dc.subject共閘極整流器zh_TW
dc.subject可切換功率偵測系統zh_TW
dc.subject5G通訊zh_TW
dc.subjectautomatic gain control amplifieren
dc.subject5G communicationen
dc.subjectswitch control power detectoren
dc.subjectpower detectoren
dc.subjectcommon gate rectifieren
dc.subjectmillimeter waveen
dc.titleCMOS製程下應用於5G通訊Ka頻段切換式功率偵測器zh_TW
dc.titleKa-band Switchable Power Detectors in CMOS Process
for 5G Communication
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林坤佑(Kun-You Lin),蔡政翰(Jeng-Han Tsai),張譽騰(Yu-Teng Chang)
dc.subject.keyword毫米波,功率偵測電路,自動增益調變放大器,共閘極整流器,可切換功率偵測系統,5G通訊,zh_TW
dc.subject.keywordmillimeter wave,power detector,automatic gain control amplifier,common gate rectifier,switch control power detector,5G communication,en
dc.relation.page117
dc.identifier.doi10.6342/NTU201904350
dc.rights.note未授權
dc.date.accepted2019-12-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
8.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved