Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧彥文(Yen-Wen Lu)
dc.contributor.authorTing-Chang Wengen
dc.contributor.author翁鼎璋zh_TW
dc.date.accessioned2021-06-08T03:27:40Z-
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-01
dc.identifier.citationAndrikopoulos, G., et al. (2011). A survey on applications of pneumatic artificial muscles. 2011 19th Mediterranean Conference on Control Automation (MED), IEEE.

Azis, F., et al. (2012). 'Problem identification for underwater remotely operated vehicle (ROV): A case study.' Procedia Engineering 41: 554-560.

Calisti, M., et al. (2017). 'Fundamentals of soft robot locomotion.' Journal of The Royal Society Interface 14(130): 20170101.

Chen, B. and H. Jiang (2019). 'Swimming performance of a tensegrity robotic fish.' Soft robotics 6(4): 520-531.

Epps, B. P., et al. (2009). 'Swimming performance of a biomimetic compliant fish-like robot.' Experiments in fluids 47(6): 927.

Feng, H., et al. (2020). 'Body Wave Generation for Anguilliform Locomotion Using a Fiber-Reinforced Soft Fluidic Elastomer Actuator Array Toward the Development of the Eel-Inspired Underwater Soft Robot.' Soft robotics 7(2): 233-250.

Frame, J., et al. (2018). 'Thrust force characterization of free-swimming soft robotic jellyfish.' Bioinspiration biomimetics 13(6): 064001.

Fras, J., et al. (2018). Fluidical bending actuator designed for soft octopus robot tentacle. 2018 IEEE International Conference on Soft Robotics (RoboSoft), IEEE.

Fras, J., et al. (2018). Bio-inspired octopus robot based on novel soft fluidic actuator. 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE.

Galloway, K. C., et al. (2013). Mechanically programmable bend radius for fiber-reinforced soft actuators. 2013 16th International Conference on Advanced Robotics (ICAR), IEEE.

Gosline, J. M. and M. E. DeMont (1985). 'Jet-propelled swimming in squids.' Scientific American 252(1): 96-103.

Huffard, C. L. (2006). 'Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses.' Journal of experimental biology 209(19): 3697-3707.

Katzschmann, R. K., et al. (2016). Hydraulic autonomous soft robotic fish for 3D swimming. Experimental Robotics, Springer.

Kazakidi, A., et al. (2012). Swimming patterns of the octopus vulgaris. 22nd Annual Meeting NCM Society.

Kazakidi, A., et al. (2015). Vision-based 3D motion reconstruction of octopus arm swimming and comparison with an 8-arm underwater robot. 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE.

Kim, H.-S., et al. (2017). 'Design and fabrication of soft morphing ray propulsor: undulator and oscillator.' Soft robotics 4(1): 49-60.

Laschi, C., et al. (2016). 'Soft robotics: Technologies and systems pushing the boundaries of robot abilities.' 1(1): eaah3690.

Nixon, M., et al. (2003). The brains and lives of cephalopods, Oxford University Press.

Norman, M. (2000). 'Cephalopods: a world guide: ConchBooks.' Hackenheim.

Payne, C. J., et al. (2017). 'An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization.' 4(3): 241-250.

Payne, C. J., et al. (2017). 'Soft robotic ventricular assist device with septal bracing for therapy of heart failure.' 2(12): eaan6736.

Polygerinos, P., et al. (2015). 'Soft robotic glove for combined assistance and at-home rehabilitation.' 73: 135-143.

Renda, F., et al. (2015). 'Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.' 10(5): 055005.

Roper, C. F., et al. (1984). 'Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries.'

Rus, D. and M. T. J. N. Tolley (2015). 'Design, fabrication and control of soft robots.' 521(7553): 467-475.

Sfakiotakis, M., et al. (2015). 'Octopus-inspired multi-arm robotic swimming.' 10(3): 035005.

Shen, Z., et al. (2017). 'A biomimetic underwater soft robot inspired by cephalopod mollusc.' IEEE Robotics and Automation Letters 2(4): 2217-2223.

Shen, Z., et al. (2020). 'An Underwater Robotic Manipulator with Soft Bladders and Compact Depth-Independent Actuation.' Soft robotics.

ToolBox, T. E. (2020). 'Center of Gravity and Buoyancy.' Retrieved 26 Oct, 2020, from https://www.engineeringtoolbox.com/centre-gravity-buoyancy-d_1286.html.

Trueman, E. and A. Packard (1968). 'Motor performances of some cephalopods.' Journal of Experimental Biology 49(3): 495-507.

Yuh, J. (2000). 'Design and control of autonomous underwater robots: A survey.' Autonomous Robots 8(1): 7-24.

Zhang, R., et al. (2020). 'A Cephalopod-Inspired Soft-Robotic Siphon for Thrust Vectoring and Flow Rate Regulation.' Soft robotics.

Zhou, C. and K. Low (2011). 'Design and locomotion control of a biomimetic underwater vehicle with fin propulsion.' IEEE/ASME Transactions on Mechatronics 17(1): 25-35.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21143-
dc.description.abstract軟性機器人因為重量輕,高生物相容性,高順應性和低製造成本的優點,在最近引起相當大的注意力。它們在工業用夾爪,醫用器材和仿生科技的應用有重大的改進並創造了新的機會。特別是能夠模仿大自然動物運動模式的仿生軟性機器人展示了在嚴酷環境中有效率移動的潛力。舉例來說,具有相似於章魚的順應性且能夠模仿其游泳的軟性機器人,在運動中展現了良好的加速度及敏捷性。它可以有其中一項最有效率的水下運動方式。因此,這篇論文要設計且製造出能夠模仿自然界章魚的兩種運動模式的軟性機器人,分別為腳部游泳以及噴射推進。我們利用高順應性的彈性材料所做的章魚軟性機器人,具有八隻腳能夠划水以及漏斗管能夠進行噴射推進。
這個軟性機器人因為不同的運動模式讓它的腳有別於其他身體部位被區分出來。軟性機器人的腳在腔體內部壓力為150 kPa時能達到90度的彎曲角度。越大的彎曲角度能夠造成越大的參考面積以及運動的動力。這個軟性機器人也能夠利用噴射推進讓自己具有前進時的巨大動力。軟性機器人漏斗管內的矽膠管和電磁閥相連接,且壓縮空氣被用來當作是噴射推進的動力源。整個機器人能分別達到最大速率為16 cm/s的腳部游泳及34 cm/s的噴射推進。我們的軟性機器人在腳部游泳的方面,相比於先前的研究,因為具有更大的腳部彎曲角度而快了大約1.3倍。此外,它在噴射推進的方面,相比於另一個先前的研究,因為更直接的能量使用,速率也快了大約1.5倍。我們的軟性機器人在水下探勘的方面展現了非常大的潛力。
zh_TW
dc.description.abstractSoft robots have recently drawn great attention due to their advantages in light weight, high biocompatibility, high compliance and low manufacturing cost. Their applications in industrial grippers, medical devices and bioinspired technology have made significant improvement and created new opportunities. In particular, bioinspired soft robots, which can imitate locomotion of a natural creatures, demonstrate a great potential to efficiently move in severe environment. For instance, a soft robot, which has similar material compliance and can imitate the swimming of an octopus, shows great acceleration and dexterousness during the movement; it can have one of the most effective locomotion underwater. This thesis therefore is to design and fabricate a soft robot with the capability to emulate two swimming patterns of a natural octopus – arm swimming and jet propulsion underwater. Our octopus soft robot, made of elastomeric materials with great compliance, has eight arms for arm swimming, and as a siphon for jet propulsion.
The soft robot is characterized for its arm and the whole robot with different swimming patterns. The soft robotic arms can attain a 90 degree bending angle when the internal pressure of chambers is 150 kPa. The large bending angle leads to the larger reference area, and the movement momentum. The soft robot can also perform jet propulsion, which contributes to the large momentum for moving forward. The silicone tube inside the soft robotic siphon is connected with a solenoid valve, and pressurized air is utilized as the power source of jet propulsion. The whole robot can attain 16 cm/s and 34 cm/s in the maximum speed from arm swimming and jetting, respectively. Our soft robot shows approximately 1.3 times faster in the arm swimming, compared to the one from existing research, because of the larger bending angle of our active arms. Besides, it also demonstrates approximately 1.5 times faster in the jet propulsion, compared to another from existing research, since the energy transfer efficiency of jet propulsion is high enough. The speed of our soft robot shows a great potential to explore underwater.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:27:40Z (GMT). No. of bitstreams: 1
U0001-3101202115263400.pdf: 9946680 bytes, checksum: ad52ec2ff74ee26e6aaea753b6abf438 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Table of Contents v
List of Figures viii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Underwater Robot 1
1.2 Soft Robots 2
1.3 Biomimetic Underwater Soft Robot 3
Chapter 2 Literature Review 5
2.1 Background Knowledge about Octopus 6
2.1.1 Body Structure of an Octopus 6
2.1.2 Locomotion of Octopus 6
2.1.3 Arm Swimming and Jet Propulsion of an Octopus 9
2.2 Octopus-Inspired Soft Robots 10
Chapter 3 Materials and Methods 13
3.1 Mechanism of Soft Robotic Jetting and Arm Swimming 14
3.2 Design and Fabrication of Soft Robot 15
3.2.1 Overall Design of Soft Robot 15
3.2.2 Mantle 21
3.2.3 Body 28
3.2.4 Actuator arms 35
3.2.5 Assembly of Soft Robot 42
3.3 Pneumatic Control of Soft Robot 44
Chapter 4 Results and Discussion 48
4.1 Actuation Performance of the Actuator Arms 48
4.2 Locomotion Performance of Our Soft Robots: Arm Swimming 56
4.2.1. Results of Soft Robotic Arm Swimming 59
4.2.2. Impact of Floating Mantle and Actuator Arms Sculling Direction 72
4.2.3. Impact of Slit Design 73
4.2.4. Impact of Different Offset Angle 75
4.3 Locomotion Performance of Our Soft Robots: Jet Propulsion 78
4.3.1. Results of Soft Robotic Jet Propulsion 79
4.3.2. Impact of Floating Mantle 86
4.3.3. Impact of Different Offset Angle 87
4.4 Performance Analysis of Soft Robot 89
4.4.1. Performance Analysis of Soft Robotic Arm Swimming 89
4.4.2. Performance Analysis of Soft Robotic Jet Propulsion 91
Chapter 5 Conclusions 93
5.1 Conclusions 93
5.2 Future Prospects 95
Reference 97
Appendix A Dimension of Molds 100
A.1 Molds for Body and Mantle of Soft Robot 100
A.1.1 Soft Robot Design 1 100
A.1.2 Soft Robot Design 2 3 107
A.2 Molds for Arms of Soft Robot 115
A.3 Molds for Base of Bending Angle Measurement 116
Appendix B Detailed Process of Device Fabrication 119
B.1 Fabricating Process of Body and Mantle 119
B.2 Fabricating Process of Arms 125
B.3 Fabricating Process of Bending Angle Measurement Base 131
Appendix C Code of Fluidic Control Board 132
dc.language.isoen
dc.subject軟性機器人zh_TW
dc.subject章魚zh_TW
dc.subject噴射推進zh_TW
dc.subject氣動zh_TW
dc.subject水下探勘zh_TW
dc.subjectpneumaticen
dc.subjectunderwater explorationen
dc.subjectoctopusen
dc.subjectjet propulsionen
dc.subjectsoft roboten
dc.title具有腕足游泳及噴射推進運動的氣動軟性章魚機器人zh_TW
dc.titleOctopus-inspired pneumatic soft robot with locomotion of arm swimming and jettingen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),鍾添淦(Tien-Kan Chung),鄭鈺潔(Yu-Chieh Cheng)
dc.subject.keyword章魚,噴射推進,軟性機器人,氣動,水下探勘,zh_TW
dc.subject.keywordoctopus,jet propulsion,soft robot,pneumatic,underwater exploration,en
dc.relation.page133
dc.identifier.doi10.6342/NTU202100292
dc.rights.note未授權
dc.date.accepted2021-02-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-3101202115263400.pdf
  未授權公開取用
9.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved