Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21129
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorHan-Wen Huen
dc.contributor.author胡瀚文zh_TW
dc.date.accessioned2021-06-08T03:27:28Z-
dc.date.copyright2019-12-26
dc.date.issued2019
dc.date.submitted2019-12-24
dc.identifier.citation[1] Q. Ma, J. Clin. Invest. 2010, 120, 3773.
[2] W. Hu, X. Niu, R. Zhao, Q. Pei, Appl. Phys. Lett. 2013, 102 (8), 083303.
[3] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
[4] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 2014, 5, 3132.
[5] M. Ramuz, B. C. K. Tee, J. B. H. Tok, Z. Bao, Adv. Mater. 2012, 24 (24), 3223−3227.
[6] S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149.
[7] C. Yu, Z. Wang, H. Yu, H. Jiang, Appl. Phys. Lett. 2009, 95 (14), 2007−2010.
[8] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (35), 12321− 12325.
[9] M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, Z. Bao, Adv. Mater. 2013, 25, 5997.
[10] J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
[11] S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, Science 2014, 344, 70.
[12] G. Schwartz, B. C. Tee, J. Mei, A. L. Appleton, H. Kim do, H. Wang, Z. Bao, Nat. Commun. 2013, 4, 1859.
[13] X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Adv. Mater. 2014, 26, 1336.
[14] J. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Sci. Adv. 2015, 1, e1500661.
[15] S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, Z. Suo, T. Someya, Nat. Nanotechnol. 2016, 11, 472.
[16] J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, K. Suganuma, Nanoscale 2015, 7, 2926.
[17] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 2014, 5, 3132.
[18] N. T. Tien, S. Jeon, D. I. Kim, T. Q. Trung, M. Jang, B. U. Hwang, K. E. Byun, J. Bae, E. Lee, J. B. Tok, Z. Bao, N. E. Lee, J. J. Park, Adv. Mater. 2014, 26, 796.
[19] K. Kanao, S. Harada, Y. Yamamoto, W. Honda, T. Arie, S. Akita, K. Takei, RSC Adv. 2015, 5, 30170.
[20] F. Zhang, Y. Zang, D. Huang, C.-a. Di, D. Zhu, Nat. Commun. 2015, 6, 8356.
[21] Z. Cui, F. R. Poblete, G. Cheng, S. Yao, X. Jiang, Y. Zhu, J. Mater. Res. 2015, 30 (01), 79−85.
[22] J. Yi, J. M. Lee, W. Il. Park, Sens. Actuators 2011, 155 (1), 264−269.
[23] T. Takahashi, K. Takei, A. G. Gillies, R. S. Fearing, A. Javey, Nano Lett., 2011, 11, 5408.
[24] K. Takei, et al. Nature Mater., 2010, 9, 821.
[25] Q. Sun, D. H. Kim, S. S. Park, N. Y. Lee, Y. Zhang, J. H. Lee, K. Cho, J. H. Cho, Adv. Mater. 2014, 26, 4735.
[26] H. H. Chou, A. Nguyen, A. Chortos, J. W. To, C. Lu, J. Mei, T. Kurosawa, W. G. Bae, J. B. H. Tok, Z. Bao, Nat. Commun. 2015, 6, 8011.
[27] Q. Sun, W. Seung, B. J. Kim, S. Seo, S. W. Kim, J. H. Cho, Adv. Mater. 2015, 27, 3411.
[28] D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z.Sodnik, D. M. Cornwell, Proc. SPIE 89710S (2014).
[29] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, Science 1996, 273, 1185.
[30] W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73.
[31] F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, P. N. Prasad, Nano Today 2015, 10, 168.
[32] D. S. Wiersma, Nat. Phys. 2008, 4, 359.
[33] Y. M. Liao, Y. C. Lai, P. Perumal, W. C. Liao, C. Y. Chang, C. S. Liao, S. Y. Lin, Y. F. Chen, Adv. Mater. Technol. 2016, 1, 1600068.
[34] C. Y. Tsai, Y. M. Liao, W. C. Liao, W. J. Lin, P. Perumal, H. H. Hu, S. Y. Lin, C. H. Chang, S. Y. Cai, T. M. Sun, Adv. Mater. Technol. 2017, 2, 1700170.
[35] S. W. Chang, W. C. Liao, Y. M. Liao, H. I. Lin, H. Y. Lin, W. J. Lin, S. Y. Lin, P. Perumal, G. Haider, C. T. Tai, K. C. Shen, C. H. Chang, Y. F. Huang, T. Y. Lin, Y. F. Chen, Sci. Rep. 2018, 8, 2720.
[36] B. Redding, M. A. Choma, H. Cao, Nat. Photonics 2012, 6, 355.
[37] G. Haider, H. I. Lin, K. Yadav, K. C. Shen, Y. M. Liao, H. W. Hu, P. K. Roy, K. P. Bera, K. H. Lin, H. M. Lee, Y. T. Chen, F. R. Chen, Y. F. Chen, ACS Nano 2018, 12, 11847.
[38] H. W. Hu, G. Haider, Y. M. Liao, P. K. Roy, R. Ravindranath, H. T. Chang, C. H. Lu, C. Y. Tseng, T. Y. Lin, W. H. Shih, Adv. Mater. 2017, 29, 1703549.
[1] V. Letokhov, J. Exp. Theor. Phys. 1968, 26, 835.
[2] D. S. Wiersma, Nat. Phys. 2008, 4, 359.
[3] F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, P. N. Prasad, Nano Today 2015, 10, 168.
[4] N. M. Lawandy, R. Balachandran, A. Gomes, E. Sauvain, Nature 1994, 368, 436.
[5] B. Redding, M. A. Choma, H. Cao, Nat. Photonics 2012, 6, 355.
[6] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96.
[7] Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, L. Qian, Nat. Photonics 2015, 9, 259.
[8] X. Lin, X. L. Dai, C. D. Pu, Y. Z. Deng, Y. Niu, L. M. Tong, W. Fang, Y. Z. Jin, X. G. Peng, Nat. Commun. 2017, 8, 1132.
[9] H. Zhang, N. Sui, X. Chi, Y. Wang, Q. Liu, H. Zhang, W. Ji, ACS Appl. Mater. Interfaces 2016, 8, 31385.
[10] Q. Huang, S. Zhao, L. J. Guo, Z. Xu, P. Wang, Z. L. Qin, Org. Electron. 2017, 49, 123.
[11] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. M. Yang, M. Wei, B. R. Sutherland, E. H. Sargent, J. You, Nat. Commun. 2017, 8, 15640.
[12] Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, L. Li, ACS Photonics 2018, 5, 939.
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
[14] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
[16] J. Du, S. Pei, L. Ma, H. M. Cheng, Adv. Mater. 2014, 26, 1958.
[17] D. M. Sun, C. Liu, W. C. Ren, H. M. Cheng, Adv. Electron. Mater. 2016, 2, 1600229.
[18] D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
[19] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim, Science, 2008, 320, 1308.
[1] S. Wagner, et al. Electronic skin: Architecture and components. Physica E, 2004, 25, 326.
[2] T. Sekitani, T. Someya, Adv. Mater., 2010, 22, 2228.
[3] D. J. Lipomi, et al. Nature Nanotech., 2011, 6, 788.
[4] B. C-K. Tee, C. Wang, R. Allen, Z. Bao, Nature Nanotech., 2012, 7, 825.
[5] N. Lu, C. Lu, S. Yang, J. Rogers, Adv. Funct. Mater., 2012, 22, 4050.
[6] J. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Sci. Adv., 2015, 1, e1500661.
[7] A. Chortos, J. Liu, Z. Bao, Nat. Mater., 2016, 15, 937.
[8] B. Yu, et al. Nat. Mater., 2016, 15, 911.
[9] A. D. Valentine, T. A. Busbee, J. W. Boley, J. R. Raney, A. Chortos, A. Kotikian, J. D. Berrigan, M. F. Durstock, J. A. Lewis, Adv. Mater., 2017, 29, 1703817.
[10] J. T. Reeder, T. Kang, S. Rains, W. Voit, Adv. Mater., 2018, 30, 1706733.
[11] S. Wang, et al. Nature, 2018, 555, 83.
[12] T. Someya, Proc. Natl Acad. Sci. USA, 2004, 101, 9966.
[13] T. Someya, Proc. Natl Acad. Sci. USA, 2005, 102, 12321.
[14] T. Takahashi, K. Takei, A. G. Gillies, R. S. Fearing, A. Javey, Nano Lett., 2011, 11, 5408.
[15] K. Takei, et al. Nature Mater., 2010, 9, 821.
[16] J. A. Rogers, T. Someya, Y. Huang, Science, 2010, 327, 1603.
[17] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Science, 2016, 351, 1071.
[18] Md. A. Haque, T. Kurokawa, G. Kamita, Y. Yue, J. P. Gong, Chem. Mater., 2011, 23, 5200.
[19] S. A. Morin, Science, 2012, 337, 828.
[20] Q. Zhao, et al. Appl. Phys. Lett., 2012, 100, 101902.
[21] C. Wang, et al. Nat. Mater., 2013, 21, 899.
[22] H. H. Chou, et al. Nat. Com., 2015, 6, 8011.
[23] E. U. Rafailov, M. A. Cataluna, W. Sibbett, Nat Photonics, 2007, 1, 395.
[24] A. Nurmikko, Nat Nanotechnol, 2015, 10, 1001.
[25] Q. Sun, et al. Nat. Photonics, 2007, 1, 717.
[26] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, M. G. Bawendi, Nat. Photonics, 2008, 2, 247.
[27] K. H. Lee, et al. ACS Nano, 2013, 7, 7295.
[28] J. Kwak, et al. Nano Lett., 2012, 12, 2362.
[29] X. Dai, et al. Nature, 2014, 515, 86.
[30] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulovic, Nat. Photonics, 2013, 7, 13.
[31] J. Kwak, et al. Nano Lett., 2012, 12, 2362.
[32] J. Atebayashi, et al. Nat. Photonics, 2015, 9, 501.
[33] X. Xie, Q. Wang, Energy, 2015, 86, 385.
[34] E. Aksel, J. L. Jones, Sensors, 2010, 10, 1935.
[35] P. K. Panda, J. Mater. Sci., 2009, 44, 5049.
[36] Y. B. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. S. Huang, Nat. Mater., 2011, 10, 296.
[37] X. Chen, X. Han, Q. D. Shen, Adv. Electron. Mater., 2017, 3, 1600460.
[38] M. T. Chorsi, E. J. Curry, H. T. Chorsi, R. Das, J. Baroody, P. K. Purohit, H. Ilies, T. D. Nguyen, Adv. Mater., 2019, 31, 1802084.
[39] X. D. Wang, et al. Adv. Mater., 2015, 27, 6575.
[40] F. R. Cao, W. Tian, L. X. Meng, M. Wang, L. Li, Adv. Funct. Mater., 2019, 29, 1808415.
[41] Y. Chen, et al. ACS Appl. Mater. Inter., 2016, 8, 32083.
[42] C. Ma, et al. Nanoscale, 2016, 8, 18309.
[43] Y. Xia, K. Sun, J. Chang, J. Ouyang, J. Mater. Chem. A, 2015, 3, 15897.
[44] K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, F. H. Isikgor, J. Ouyang, J. Mater. Sci.: Mater. Electron., 2015, 26, 4438.
[45] M. W. Thesen, B. Hofer, M. Debeaux, S. Janietz, A. Wedel, A. Kohler, H. H. Johannes, H. Krueger, J. Polymer Sci., 2010, 48, 3417.
[46] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, J. Nelson, J. Phys. Chem. B, 2006, 110, 7635.
[47] J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, W. Lei, F. Xu, and Z. Zhang,
RSC Advances, 2015, 5, 82192.
[48] J. B. Kwon, et al. Organic Electronics 2019, 74, 166.
[49] B. B. Tian, et al. Nat. Commun. 2016, 7, 11502.
[1] F. Visentin, P. Fiorini, K. Suzuki, Sensors 2016, 16, 1.
[2] T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, T. Someya, Sci. Adv. 2016, 2, e1501856.
[3] A. Alzahrani, S. Hu, V. Azorin-Peris, L. Barrett, D. Esliger, M. Hayes, S. Akbare, J. Achart, S. Kuoch, Sensors 2015, 15, 25681.
[4] H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes 3rd, J. Xiao, S. Wang, Y. Huang, J. A. Rogers, Nature 2008, 454, 748.
[5] S. P. Lacour, S. Wagner, Z. Huang, Z. Suo, Appl. Phys. Lett. 2003, 82, 2404.
[6] J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
[7] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nat. Mater. 2009, 8, 494.
[8] M. S. White, M. Kaltenbrunner, E. D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, N. S. Sariciftci, Nat. Photon. 2013, 7, 811.
[9] Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, R. Kaiser, Nat. Phys. 2013, 9, 357.
[10] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, Phys. Rev. Lett. 1999, 82, 2278.
[11] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature 1994, 368, 436.
[12] D. S. Wiersma, Nat. Photon. 2013, 7, 188.
[13] D. S. Wiersma, S. Cavalieri, Nature 2001, 414, 708.
[14] Y. M. Liao, Y. C. Lai, P. Perumal, W. C. Liao, C. Y. Chang, C. S. Liao, S. Y. Lin, Y. F. Chen, Adv. Mater. Technol. 2016, 1, 6.
[15] G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, J. A. Robinson, ACS Nano 2015, 9, 11509.
[16] C. R. Dean, F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
[17] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. Van DenBrink, Phys. Rev. B 2007, 76, 2.
[18] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V.V. Khotkevich, S.V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451.
[19] F. Schwierz, Nat. Nanotechnol. 2010, 5, 487.
[20] A. Klekachev, Electrochem. Soc. Interface 2013, 22, 63.
[21] X. F. Lin, Z. Y. Zhang, Z. K. Yuan, J. Li, X. F. Xiao, W. Hong, X. D. Chen, D. S. Yu, Chin. Chem. Lett. 2016, 27, 1259.
[22] Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Adv. Funct. Mater. 2014, 24, 4666.
[23] J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, O. O. Park, ACS Appl. Mater. Interfaces 2015, 7, 6317.
[24] A. J. Bandodkar, W. Jia, C. Yardimci, X. Wang, J. Ramirez, J. Wang, Anal. Chem. 2015, 87, 394.
[25] D. Du, P. Li, J. Ouyang, J. Mater. Chem. C 2016, 4, 3224.
[26] S. Deng, V. Berry, Mater. Today 2016, 19, 197.
[27] P. Kang, M. C. Wang, P. M. Knapp, S. W. Nam, Adv. Mater. 2016, 28, 4565.
[28] C. W. Chiang, Golam. H, W. C. Tan, Y. R. Liou, Y. C. Lai, R. Ravindranath, H. T. Chang, Y. F. Chen, ACS Appl. Mater. Interfaces 2016, 8, 466.
[29] J. A. Baimova, E. A. Korznikova, S.V. Dmitriev, B. Liu, K. Zhou, Rev. Adv. Mater. Sci. 2014, 39, 69.
[30] J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, X. Zhao, Nat. Mater. 2013, 12, 321.
[31] W. M. El Rouby, RSC Adv. 2015, 5, 66767.
[32] P. Kang, M. C. Wang, P. M. Knapp, S. Nam, Adv. Mater. 2016, 28, 4639.
[33] S. Deng, V. Berry, Mater. Today 2016, 19, 197.
[34] F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, ACS Nano 2015, 3, 4533.
[35] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
[36] H. Kim, C. Lee, J. Im, K. Lee, T. Moehl, A. Marchioro, S. Moon, R. Humphry-baker, J. Yum, J. E. Moser, M. Gra, Sci. Rep. 2012, 2, 591.
[37] T. Hakamata, K. Shimamura, F. Shimojo, R. K. Kalia, A. Nakano, P. Vashishta, Sci. Rep. 2016, 6, 19599.
[38] C. H. Lu, J. Hu, W. Y. Shih, W. H. Shih, J. Colloid Interface Sci. 2016, 484, 17.
[39] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G.De. Luca, M. Fiebig, W. Heiss, M.V. Kovalenko, Nat. Commun. 2015, 6, 1.
[40] P. Roy, A. P. Periasamy, C. Chuang, Y. R. Liou, Y. F. Chen, J. Joly, C. T. Liang, H. T. Chang, New J. Chem. 2014, 38, 4946.
[41] P. Roy, P. C. Chen, A. P. Periasamy, Y. N. Chen, H. T. Chang, Mater. Today 2015, 18, 447.
[42] G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, Y. F. Chen, Adv. Funct. Mater. 2016, 26, 620.
[43] C. W. Chiang, G. Haider, W. C. Tan, Y. R. Liou, Y. C. Lai, R. Ravindranath, H. T. Chang, Y. F. Chen, ACS Appl. Mater. Interfaces 2016, 8, 466.
[44] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
[45] Y. Stehle, H. M. M. Iii, R. R. Unocic, M. Kidder, G. Polizos, P. G. Datskos, R. Jackson, S. N. Smirnov, I.V. Vlassiouk, Chem. Mater. 2015, 27, 8041.
[46] G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, Nat.Commun. 2015, 6, 6160.
[47] K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583.
[48] L. C. Schmidt., A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, J. Am. Chem. Soc. 2014, 136, 850.
[49] X. Meng, K. Fujita, S. Murai, Y. Zong, S. Akasaka, H. Hasegawa, K. Tanaka, Phys. Status Solidi (C) 2009, 6, 1.
[50] A. Consoli, C. López, Sci. Rep. 2015, 5, 16848.
[51] H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, R. P. H. Chang, IEEE J. Sel. Top. Quantum Electron 2003, 9, 111.
[52] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Adv. Mater. 2016, 28, 6804.
[53] B. R. Sutherland, E. H. Sargent, Nat. Photon. 2016, 10, 295.
[54] H. Cao, J. Phys. A. 2005, 38, 10497.
[55] T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, Y. F. Chen, ACS Nano 2015, 9, 12436.
[56] D. S. Wiersma, Nat. Phys. 2008, 4, 359.
[57] A. O. Animalu, Intermediate quantum theory of crystalline solids, Prentice Hall, Upper Saddle River, NJ, USA 1977.
[58] T. Kishikawa, Radioanal. J. Nucl. Chem. 1984, 85, 305.
[59] D. Kleinman, R. Miller, Phys. Rev. B 1985, 32, 2266.
[60] S. D. Sarma, R. Jalabert, S. R. E. Yang, Phys. Rev. B 1990, 41, 8288.
[61] K. Fai, L. Ju, F. Wang, T. F. Heinz, Solid State Commun. 2012, 152, 1341.
[62] G. Cassabois, P. Valvin, B. Gil, Nat. Photon. 2016, 10, 262.
[1] A . A. Golubentsev, Sov. Phys. JETP. 1984, 86, 47.
[2] A. Lagendijk, B. A. van Tiggelen, Phys. Rep. 1996, 270, 143.
[3] M. P. Van Albada, A. Lagendijk, Phys. Rev. Lett. 1985, 55, 2692-2695.
[4] E. Wolf, G. Maret, Phys. Rev. Lett. 1985, 55, 2696-2699.
[5] D. S. Wiersma, Nat. Photon. 2013, 7, 188.
[6] P. W. Anderson, Phys. Rev. 1958, 109, 1492-1505.
[7] A. Z. Genack, N. Garcia, Phys. Rev. Lett. 1991, 66, 2064-2067.
[8] P. Armstrong, S. Schultz, P. M. Platzman, S. L. McCall, Nature 1991, 354, 53-55.
[9] D. S. Wiersma, P. Bartolini, Ad. Lagendijk, R. Righini, Nature 1997, 390, 671-673.
[10] H. Cao, Y. G. Zhao, Phys. Rev. Lett. 1999, 82, 2278-2281.
[11] A. A. Chabanov, M. Stoytchev, A. Z. Genack, Nature 2000, 404, 850-853.
[12] J. Fallert, Roman J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, H. Kalt,
Nat. Photonics 2009, 3, 279-282.
[13] S. Mujumdar, M. Ricci, R. Torre, D. S. Wiersma, Phys. Rev. Lett. 2004, 93, 053903.
[14] X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, H. Cao, Phys. Rev. A 2006, 74, 053812.
[15] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature 1994, 368, 436-438.
[16] B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, H. Cao, Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 1304-1309.
[17] A. S. L. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. R. Pincheira, V. Jerez, L. J. Q. Maia, C. B. de Araújo, Sci. Rep. 2016, 6, 27987.
[18] D. S. Wiersma, S. Cavalieri, Nature 2001, 414, 708-709.
[19] T. Zhai, Y. Wang, L. Chen, X. Wu, S. Lia, X. Zhang, Nanoscale 2015, 7, 19935.
[20] D. S. Wiersma, Nat. Phys. 2008, 4, 359-367.
[21] A. Marini, F. J. García de Abajo, Phys. Rev. Lett. 2016, 116, 217401.
[22] S. Perumbilavil, A. Piccardi, R. Barboza, O. Buchnev, M. Kauranen, G Strangi, G. Assanto, Nat. Commun. 2018, 9, 3863.
[23] F. Yuan, Z. Xi, X. Shi, Y. Li, X. Li, Z. Wang, L. F, S. Yang, Adv. Opt. Mater. 2019, 7, 1801202.
[24] B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, A. Mafi, Light Sci. Appl. 2017, 6, e17041.
[25] S. Yakunin, et al. Nat. Commun. 2015, 6, 8056.
[26] J. Feng, et al. Nat. Phys. 2014, 10, 606-612.
[27] R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops and Particles, Dover Publications, Mineola, NY, USA 1978.
[28] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Nat. Photonics 2007, 1, 717-722.
[29] K. D. Wegner, N. Hildebrandt, Chem. Soc. Rev. 2015, 44, 4792-4834.
[30] E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater. 2010, 22, 3076-3080.
[31] H. W. Hu, et al. Adv. Mater. 2017, 29, 1703549.
[32] X. L. Dai, et al. Nature 2014, 515, 96-99.
[33] P. Sheng, Scattering And Localization Of Classical Waves In Random Media, World Scientific Publishing CO, Singapore 1990.
[34] M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, U. Banin, Adv. Mater. 2002, 14, 317-321.
[35] Y. C. Yao, et al. Adv. Opt. Mater. 2017, 5, 1600746.
[36] Y. Chen, et al. Opt. Express 2011, 19, 2996-3003.
[37] J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, L. J. Wang, Nano Lett. 2008, 8, 1709-1712.
[38] P. J. Sheskey, W. G. Cook, C. G. Cable, Handbook of pharmaceutical excipients eight edition, Pharmaceutical Press, London, United Kingdom 2017.
[39] S.Y. Cai, et al. ACS Appl. Mater. Interfaces 2018, 10, 17393-17400.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21129-
dc.description.abstract近年來,因應科技快速的發展,電子及光電產業都致力於研發具備更多新特性的元件,此論文中,我們設計、製程以及展示了可用於電子皮膚中,可撓與多功能的新穎光電元件,我們相信這些新穎的設計能帶給下世代穿載式元件的研究發展很大的作用。本論文包含三個主題,其摘要如下:
1. 利用壓電效應和可撓式量子點發光二極體之互動式變色電子皮膚
啟發於變色龍、青蛙、頭足類動物等自然界動物,改變皮膚顏色的能力可以用於偽裝、警示、視覺通訊,而引起了大家強烈的興趣。電子皮膚能藉由量化外在的刺激模仿生物皮膚,到今日,對能模仿可變色之電子皮膚的研究以感測器和顯示器陣列的整合來完成,而需要繁複的製程,本研究中,我們首次展示了單一元件作為能隨施加壓力變化顏色的互動式電子皮膚,製程的方法有效節省成本和空間,因此對發展下世代具備視覺回饋的電子皮膚有非常大的幫助。
2. 皺褶結構二維材料作為可拉伸且低閾值隨機雷射的多功能平台
具有可拉伸、可彎曲、以及寬頻譜的隨機雷射系統在下一代技術中具有許多潛在的可應用性,例如可見光通訊,超高亮度固態照明,生物醫學研究,螢光等等。然而,可拉伸雷射元件所需的共振腔製成一直是個困難,因為一般用來產生同調性輸出的共振腔都不具延展性。二維材料有高延展性的優勢,在行成皺褶結構下可以在結構的峰谷間侷限光子。此研究中,我們分別利用有皺褶的石墨烯碎片、單層石墨烯和多層氮化硼,設計了具有超低閾值的可拉伸和可穿戴隨機雷射元件。並使用鈣鈦礦奈米晶體(PNC)來說明我們的原理,發現雷射閾值為〜10 µJ/cm2,比現有報導的隨機雷射最低值低了大約兩倍。除了PNC之外,我們還證明了可以使用不同的主動材料(例如半導體量子點)來調整輸出的雷射波長。 因此,此研究對未來高效能的可穿戴光電元件的發展非常有幫助。
3. 利用全反射之超低閥值無共振腔雷射元件
在波傳遞碰到物質邊界時,全反射是個最重要的現象,能廣泛應用從光通訊到螢光顯微鏡,也常在傳統雷射的共振腔中被利用。近年來,在無序介質中無共振腔雷射的物理現象,像是光的安德森侷限到散斑成像,得到了很大的關注,然而,有別於傳統雷射,全反射並未被研究於隨機分布介質中引起的雷射中,因此,我們用空氣泡作為散射中心來展示出一個超低閥值的無共振腔雷射系統,光在空氣泡表面的全反射能大幅減少能量的損失而增強光的放大效應,我們的方法提供了很好的方案來調控光的能量流動,以達到超低閥值的無共振腔雷射系統,對高效能光電元件的發展提供很好的方向。
zh_TW
dc.description.abstractOver the last several decades, electronic and optoelectronic industries are going through a major paradigm shift for the development of devices with new characteristics to meet the desire of rapid growth of science and technologies. In this thesis, we have designed and demonstrated new flexible and multi-functional optoelectronic devices for electronic skins, which shows the great potentials for the development of next-generation wearable electronics. Our results are classified as three main topics and summarized as follows:
1. Interactive color-changing electronic-skin based on flexible and piezoelectrically tunable quantum dots light emitting diodes
Inspired by animals in nature, such as chameleons, frogs, and cephalopods, the remarkable capability of changing one’s skin color has drawn considerable interests due to its wide applications in camouflage, warning methods, and visual communications. Today, research on electronic skins (e-skins), imitate biological skin by quantifying external stimuli, to mimic this unique color-changing function has been achieved based on the integration of a matrix of displays and sensors; however, integrated systems possess bulky and complicated fabrication processes. Here, we make the first attempt to demonstrate a single user-interactive e-skin device with color-changing response upon applied external strain, while using a cost-effective and space-saving method, which promises to open new possibilities for the development of next-generation e-skins with the visual response.
2. Wrinkled Two-dimensional Materials: A Versatile Platform for Low-threshold Stretchable Random Lasers
A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum has many potential applications in next-generation technologies, such as visible-spectrum communication, super-bright solid-state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. Two-dimensional materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. In this study, we utilize the intriguing functionality of wrinkled reduced graphene oxide, single-layer graphene, and few-layer hexagonal boron nitride, respectively, to design highly stretchable and wearable random laser devices with the ultra-low threshold. Using methyl-ammonium lead bromide perovskite nanocrystals (PNC) to illustrate our working principle, the lasing threshold is found to be ~ 10 µJ/cm2, about two times less than the lowest value ever reported. In addition to PNC, we demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, our study is very useful for the future development of high-performance wearable optoelectronic devices.
3. Ultra-low Threshold Cavity-free Laser induced by Total Internal Reflection
Total internal reflection is one of the most important phenomena when a propagated wave strikes a medium boundary, which possesses a wide range of applications spanning from optical communication to fluorescence microscope. It has also been widely used to demonstrate conventional laser actions with resonant cavities. Recently, cavity-free laser actions have attracted a great attention due to several exciting physical phenomena in disordered media, ranging from Anderson localization of light to speckle free imaging. However, unlike conventional laser systems, total internal reflection has never been implemented in the study of laser action derived from randomly distributed media. Herein, we demonstrate an ultra-low threshold cavity-free laser system using air bubbles as scattering centers, in which the total internal reflection from the surface of air bubbles can greatly reduce the leakage of the scattered beam energy and then enhance the light amplification within a coherent closed loop. Our approach provides an excellent alternative for the manipulation of optical energy flow to achieve ultra-low threshold cavity-free laser systems, which should be very useful for the development of high-performance optoelectronic devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:27:28Z (GMT). No. of bitstreams: 1
ntu-108-F04222004-1.pdf: 7763459 bytes, checksum: 5ecbbf25dce3b37e37224aca1b45869d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContents
誌謝 I
中文摘要 II
Abstract IV
List of Publication VIII
Contents X
List of Figures XIII
Figure of Chapter 2 XIIIV
Figure of Chapter 3 XIII
Figure of Chapter 4 XV
Figure of Chapter 5 XVIII
Chapter1 Introduction 1
1.1 Introduction to Electronic Skin (E-Skin) 1
1.2 Introduction to Wearable and Stretchable Random Lasers 2
References 4
Chapter 2 Theoretical Background and Experimental Details 8
2.1 Photoluminescence (PL) 8
2.2 Electroluminescence (EL) 10
2.3 Random Laser (RL) 12
2.4 Quantum Confinement Effect 14
2.5 Quantum Dots Light Emitting Diode (QLED) 16
2.6 Two Dimensional Materials: Graphene 18
2.7 Thermal Evaporation 20
2.8 Scanning Electron Microscopy (SEM) 21
2.9 Atomic Force Microscopy (AFM) 23
2.10 Raman Scattering Spectrum 24
References 26
Chapter 3 Interactive color-changing electronic-skin based on flexible and piezoelectrically tunable quantum dots light emitting diodes 28
3.1 Introduction 28
3.2 Experimental Section 31
3.3 Result and Discussions 32
3.4 Conclusion 40
References 46
Chapter 4 Wrinkled Two-dimensional Materials: A Versatile Platform for Low-threshold Stretchable Random Lasers 50
4.1 Introduction 50
4.2 Experimental Section 52
4.3 Result and Discussions 55
4.4 Conclusion 56
References 76
Chapter 5 Ultra-low Threshold Cavity-free Laser induced by Total Internal Reflection 82
5.1 Introduction 82
5.2 Experimental Section 85
5.3 Result and Discussions 86
5.4 Conclusion 92
References 97
Chapter 6 119
Conclusion 119
dc.language.isoen
dc.subject二維材料zh_TW
dc.subject電子皮膚zh_TW
dc.subject互動式元件zh_TW
dc.subject隨機雷射zh_TW
dc.subject全反射zh_TW
dc.subjectElectronic-skinen
dc.subjectTotal Internal Reflectionen
dc.subjectTwo-Dimensional Materialsen
dc.subjectRandom Laseren
dc.subjectUser-interactive Deviceen
dc.title先進可穿載式光電元件之研究與應用zh_TW
dc.titleDesign, fabrication, characterization, and application of advanced wearable optoelectronic devicesen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee林泰源(Tai-Yuan Lin),沈志霖(Ji-Lin Shen),許芳琪(Fang-Chi Hsu),謝雅萍(Ya-Ping Hsieh)
dc.subject.keyword電子皮膚,互動式元件,隨機雷射,二維材料,全反射,zh_TW
dc.subject.keywordElectronic-skin,User-interactive Device,Random Laser,Two-Dimensional Materials,Total Internal Reflection,en
dc.relation.page122
dc.identifier.doi10.6342/NTU201701770
dc.rights.note未授權
dc.date.accepted2019-12-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved