請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21083完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭柏齡(Po-Ling Kuo) | |
| dc.contributor.author | Shih-Jou Chung | en |
| dc.contributor.author | 鍾詩柔 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:26:46Z | - |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-19 | |
| dc.identifier.citation | Kavcic P, Koren A, Koritnik B, Fajdiga I, Groselj LD. Sleep magnetic resonance imaging with electroencephalogram in obstructive sleep apnea syndrome. Laryngoscope. 2015;125(6):1485-1490. doi:10.1002/lary.25085
Pien GW, Rosen IW, Fields BG. Sleep apnea syndromes: central and obstructive. Fishman's Pulmonary Diseases and Disorders, Fifth Edition Eds. 2015 M. A. Grippi et al. Eds. New York. NY: McGraw-Hill Education Lahav Y, Rosenzweig E, Heyman Z, Doljansky J, Green A, Dagan Y. Tongue base ultrasound: a diagnostic tool for predicting obstructive sleep apnea. Ann Otol Rhinol Laryngol. 2009; 118(3):179-184. doi:10.1177/000348940911800304 Shu CC, Lee P, Lin JW, et al. The use of sub-mental ultrasonography for identifying patients with severe obstructive sleep apnea. PLoS One. 2013;8(5):e62848. doi:10.1371/journal.pone.0062848 Chen JW, Chang CH, Wang SJ, Chang YT, Huang CC. Submental ultrasound measurement of dynamic tongue base thickness in patients with obstructive sleep apnea. Ultrasound in Medicine and Biology. 2014;40(11):2590-2598. doi:10.1016/j.ultrasmedbio.2014 .06.019 Liao LJ, Cho TY, Cheng PW, Wang CT, Lo WC, Huang TW. Submental ultrasonography in diagnosing severe obstructive sleep apnea syndrome. Journal of Medical Ultrasound. 2016; 24(3):107-111. doi:10.1016/j.jmu.2016.06.002 Bilici S, Engin A, Ozgur Y, Onerci CO, Gorkem YA, Hande YA. Submental ultrasonographic parameters among patients with obstructive sleep apnea. Otolaryngology–Head and Neck Surgery. 2017;156(3):559-566. doi:10.1177/0194599816684109 Alia ER, Mohamadb AM. Evaluation of the efficiency of anthropometric parameters and submental ultrasonographic indices as predictors for screening of obstructive sleep apnea and its severity. The Egyptian Journal of Broncholohy. 2017;11(4):355-366. doi:10.4103/ejb.ejb_17_17 Chen JW, Huang CC, Weng CK, Chang CH, Wang SJ. Simultaneous recording of ultrasound and polysomnography during natural sleep in patients with obstructive sleep apnea: a pilot study. Journal of Sleep Research. 2017;26(4):481-486. doi:10.1111/jsr.12515 Manlises CO, Chen JW, Huang CC. Ultrasonography classification of obstructive sleep apnea (osa) through dynamic tongue base motion tracking and tongue area measurements. International Conference on Biomedical and Health Informatics 2019. IFMBE Proceedings book seriers vol 74. Springer, Cham. 2020:100-107. doi:10.1007/978-3-030-30636-6_14 Abrishami A, Khajehdehi A, Chung F. A systematic review of screening questionnaires for obstructive sleep apnea. Canadian Journal of Anesthesia. 2010;57(5):423-438. doi:10.1007/s12630-010-9280-x Magalang UJ, Dmochowski J, Veeramachaneni S, et al. Prediction of the apnea-hypopnea index from overnight pulse oximetry. Chest. 2003;124(5):1694–1701 Friedman M, Hamilton C, Samuelson CG, Lundgren ME, Pott T. Diagnostic value of the Friedman tongue position and Mallampati classification for obstructive sleep apnea: a meta-analysis. Otolaryngology–Head and Neck Surgery. 2013;148(4):540-547. doi:10.1177/0194599812473413 Whyte A, Gibson D. Adult obstructive sleep apnoea: Pathogenesis, importance, diagnosis and imaging. European Journal of Radiology. 2019. doi:10.1111/1754-9485.12978 Clark GT, Sohn JW, Hong CN. Treating obstructive sleep apnea and snoring: assessment of an anterior mandibular positioning device. The Journal of the American Dental Association.2000;131(6):765-771 Jaradat M, Rahhal A. Obstructive sleep apnea, prevalence, etiology & role of dentist & oral appliances in treatment: review article. Open Journal of Stomatology. 2015;5(7):187-201. doi:10.4236/ojst.2015.57024 Cartwright RD, Samelson CF. The effects of a nonsurgical treatment for obstructive sleep apnea. The tongue-retaining device. JAMA. 1982;248(6):705-709 Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle and Nerve. 2008;37(6):679-693. doi:10.1002/mus.21015 Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. The Journal of Pediatrics. 1982;101(5):656-660. Gao J, Du LJ, He W, Li S, Cheng LG. Ultrasound strain elastography in assessment of muscle stiffness in acute levodopa challenge test: a feasibility study. Ultrasound in Medicine and Biology. 2016;42(5):1089-1089. doi:10.1016/j.ultrasmedbio.2015.12.014 Minetto MA, Caresio C, Salvi M, et al. Ultrasound-based detection of glucocorticoid-induced impairments of muscle mass and structure in cushing's disease. Journal of Endocrinological Investigation.2019;42(7):757-768. doi:10.1007/s40618-018-0979-9 Gao J, Michael O, Chen J, Min R, Li PC. Ultrasound strain elastography in assessment of chronic post-stroke spasticity of biceps brachii muscle. IEEE International Ultrasonics Symposium (IUS). 2017:1-4. doi:10.1109/ULTSYM.2017.8091938 Chuang LL, Lin KC, Wu CY, et al. Relative and absolute reliabilities of the myotonometric measurements of hemiparetic arms in patients with stroke. Archives of Physical Medicine and Rehabilitation. 2016;94(3):459-466. doi:10.1016/j.apmr.2012.08.212 Azizi E, Deslauriers AR. Regional heterogeneity in muscle fiber strain: the role of fiber architecture. Frontiers in Physiology. 2014;5(303). doi:10.3389/fphys.2014.00303 Hodges PW, Pengel LH, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscel and Nerve.2003;27(6):682-692 Chien CY, Chen JW, Chang CH, Huang CC. Tracking dynamic tongue motion in ultrasound images for obstructive sleep apnea. Ultrasound in Medicine and Biology.2017;43(12):2791-2805. doi:10.1016/j.ultrasmedbio.2017.08.001 Hsu PP, Tan AK, Chan YH, Lu PK, Blair RL. Clinical predictors in obstructive sleep apnoea patients with calibrated cephalometric analysis: a new approach. Clinical Otolaryngology. 2005;30(3):234-241 Trahey GE, Allison JW, Ramm OTV, Angle independent ultrasonic detection of blood flow. IEEE Transactions on Biomedical Engineering. 1987;34(12):965-967. doi: 10.1109/TBME.1987.325938 Li PC, Lee WN. An Efficient speckle tracking algorithm for ultrasonic imaging. Ultrasonic Imaging. 2002;24(4):215-228. doi:10.1177/016173460202400402 Moon IJ, Han DH, Kim JW, et al. Sleep magnetic resonance imaging as a new diagnostic method in obstructive sleep apnea syndrome. Laryngoscope. 2010;120(12):2546-2554. doi:10.1002/lary.21112 Prasad A, Yu E, Wong DT, Karkhanis R, Gullane P, Chan VW. Comparison of sonography and computed tomography as imaging tools for assessment of airway structures. Journal of Ultrasound in Medicine. 2011;30(7):965-972 Shenzhen Mindray Bio-Medical Electronics Co. Ltd. (1991). https://www.mindray.com/en/product/ZONE_Sonography%C2%AE_Technology.html IOPI Medical LLC. Iowa Oral Performance Instrument: users manual. 2008. http://www.iopimedical.com. Accessed 17 Sep 2008 Ulasli SS, Gunay E, Koyuncu T, et al. Predictive value of berlin questionnaire and epworth sleepiness scale for obstructive sleep apnea in a sleep clinic population. The Clinical Respiratory Journal. 2014;8(3):292-296. doi:10.1111/crj.12070 Aggarwal R, Ranganathan P. Understanding diagnostic tests - part 3: receiver operating characteristic curves. Acta Paediatrica.2007;96(5):644-647. doi:10.4103/picr.PICR_87_18 Chi L, Comyn FL, Mitra N, et al. Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI. European Respiratory Journal. 2011;38(2):348-358. doi:10.1183/09031936.00119210 Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PLoS One. 2017;12(8):e0184059. doi:10.1371/journal.pone.0184059 Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey. BioMed Research International. 2018:5137904. doi:10.1155/2018/5137904 Strickland E. AI cardiologist aces its first medical exam: a neural network outperforms human cardiologists in a task involving heart scans. IEEE Spectrum. 2018. Retrieved: June, 29, 2019, from https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/ai-cardiologist-aces-its-first-medical-exam. Clarius mobile health. Portable Handheld Ultrasound Canada(2014). https://clarius.com WiFiUltras. All Rights Reserved. Powered by Shopify. Sonostar Technologies Co., Ltd, 504#, C Building, #27 Yayingshi Road, Science Town, 510665 Guangzhou, PEOPLE’s REPIBLIC OF CHINA, 2017. https://wifiultras.com Richard WD, Zar DM, Solek R. A low-cost b-mode usb ultrasound probe. Ultrasonic Imaging. 2008;30(1):21-28 Interson Corporation. SiMPLi SP Medical. SiMPLiTM Series. 7150 Koll Center Parkway, Pleasanton, CA 94566. https://interson.com Sforza E, Bacon W, Weiss T, Thibault A, Petiau C, Krieger J. Upper airway collapsibility and cephalometric variables in patients with obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine. 2000;161(2 Pt 1):347-352 Hodges PW, Pengel LH, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscel and Nerve. 2003;27(6):682-692 Bharadwaj R, Ravikumar A, Krishnaswamy NR. Evaluation of craniofacial morphology in patients with obstructive sleep apnea using lateral cephalometry and dynamic MRI. Original Research. 2011;22(6):739-748. doi:10.4103/0970-9290.94566 Singh M, Chin KJ, Chan VW, Wong DT, Prasad GA, Yu E. Use of Sonography for Airway Assessment. Journal of Ultrasound in Medicine. 2010;29(1):79-85 Kezirian EJ, White DP, Malhotra A, Ma W, McCulloch CE, Goldberg AN. Interrater reliability of drug-induced sleep endoscopydrug-induced sleep endoscopy. JAMA Otolaryngology–Head and Neck Surgery. 2010;136(4):393-397. doi:10.1001/archoto.2010.26 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21083 | - |
| dc.description.abstract | 根據美國學者統計五成的成年人患有睡眠呼吸症困擾。本研究探討的阻塞型睡眠呼吸中止症(Obstructive sleep apnea, OSA)主要因為年紀大或肥胖使口腔周圍肌肉張力下降壓迫到呼吸道而導致身體缺氧,發展成心血管疾病和腦神經系疾病等之症。文獻指出觀察呼吸道與口腔肌肉動態影像變化能有效篩選OSA,呼吸道與OSA發病特徵的關聯性較高,因此精準度較好,但影像上的限制難以適用於每位受測者,相反的,口腔肌肉則容易尋找軟組織特徵、動態分析過程誤差較小且較適用於每位受測者。臨床診斷為多導睡眠圖中的呼吸中止指數,需在睡眠中心睡上一晚,過程中容易因環境影響導致診斷誤差。因此希望能透過操作簡單且無游離輻射的即時超音波影像系統並搭配舌頭功能性運動量測的結果來判斷需要治療的重度患者,並利用肌肉應變來進行本研究的實驗。在文獻顯示正常呼吸與口鼻不進氣為有效判斷OSA的方法,而本研究則同時利用舌壓測定器(Maximum tongue pressure measurement, TP)量測頦舌肌的肌肉張力下降,並觀察OSA組內是否在應變情況下有明顯差別。研究中將透過量測舌肌參數:最大舌根厚(Maximum tongue base apex, TBA)、舌動脈距離和最大舌厚,並利用斑點追蹤量測舌肌特定區域的位移大小與方向,且同時記錄連續的舌肌變化影像與應變趨勢圖。本研究收案為12位健康、30位輕度、30位中度、30位重度OSA患者,其中10位健康的MRI影像將用來與超音波影像之軟組織位置進行比對。結果顯示利用TP量測TBA和參考線之應變距離比能有效預測重度與非重度OSA,結果中曲線下面積0.81、敏感性73%、特異性78%,這說明TP下的肌肉應變量測有潛力可作為睡眠呼吸中止症的有效檢查方式。 | zh_TW |
| dc.description.abstract | Statistics show that a significant percentage of adults suffer from sleep apnea, and it is one of the major causes of cardiovascular and neural diseases. Our research focuses on obstructive sleep apnea (OSA), with which the primary cause is regarding the low tension around oral muscle related to age and obesity. The low tension results in upper airway obstruction by gravity during sleep. As the tongue is one of the major muscles around the airway, tongue hypertrophy reduces or blocks the retroglossal space as it does not adequately support surrounding tissues. Previous works show that dynamic changes of airspace and tongue motion are correlated with OSA severity. Upper airway anatomy is important and has strong connection with OSA pathogenesis. However, images of retropharyngeal space are difficult to acquire and determination of the landmarks is challenging. In contract, tongue motion measurements are relatively more robust in the capturing process and suitable for most patients when awake. Currently, the clinical diagnosis of OSA is performed by using apnea-hypopnea index (AHI) and polysomnography (PSG) that are collected at the sleep center overnight. The procedure is time-consuming and easily affected during monitoring. On the other hand, ultrasound examinations may be preferred because the procedure is simple, time-efficient, and non-invasive. It is the goal of this research to correlate the tongue muscle stiffness characteristics with the degree of OSA as defined by AHI. Specifically, maneuver and tongue pressure measurements (TP) are adopted to quantify the functions of the genioglossus muscle. In addition, other ultrasound parameters such as maximum tongue base apex (TBA), the distance between lingual arteries (DLA), and tongue apex (TA) are also used to measure muscle deformation and strain curves by the speckle tracking method. In this study, 12 healthy volunteers, 60 patients with mild-moderate OSA, and 30 severe OSA patients were recruited. PSG was performed at the sleep center of National Taiwan University Hospital, along with the ultrasound examinations and MRI for the healthy volunteers. The TBA and TP results show that the proposed method is able to separate severe and non-severe OSA patients. In addition, the area under the receiver operating characteristic curve is 0.81, and sensitivity is 73%, specificity is 78 percent. Thus, the clinical potential of the proposed method for OSA diagnosis is demonstrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:26:46Z (GMT). No. of bitstreams: 1 ntu-109-R06945011-1.pdf: 4995978 bytes, checksum: 9647c67e6bba5c65d4ffc52dde4278b6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii CONTENTS iv 圖目錄 vii 表目錄 xii Chapter 1 緒論 1 1.1 睡眠呼吸中止症 1 1.1.1 診斷睡眠呼吸中止介紹 2 1.1.2 治療睡眠呼吸中止方法 3 1.2 超音波對於肌肉功能性之影像觀察 4 1.3 睡眠呼吸中止與超音波肌肉影像關係 9 1.4 影像斑點追蹤原理 12 1.5 研究動機與目標 14 Chapter 2 研究方法與系統架構 15 2.1 軟體系統架構 15 2.1.1外部結構與內部運算 15 2.1.2 軟體驗證 18 2.2 超音波對於肱二頭肌纖維的應變使用 20 2.3 健康與嚴重睡眠呼吸患者收集 20 2.4 儀器使用介紹和儀器架構 21 2.5 研究方法 22 2.5.1 收案標準 22 2.5.2 參數使用 23 2.5.3 超音波量測標準與過程 25 2.5.4 資料收集 27 2.5.5 統計 28 Chapter 3 實驗結果 29 3.1 軟體和Field II驗證結果比較 29 3.2 軟體與臨床上肱二頭肌硬度與應變結果比較 31 3.3 超音波量測與實驗的可重複性 32 3.4 靜態與斑點追蹤之動態方法比較 34 3.5 健康與OSA臨床特徵比較 35 3.6 OSA組內舌肌臨床特徵與形變比較 40 3.6.1 OSA組內臨床特徵比較 40 3.6.2 OSA組內肌肉形變量比較 44 3.6.3 文獻比較 52 3.6.4 問卷比較 57 Chapter 4 結論與問題討論 59 4.1 結論 59 4.2 問題討論 60 4.2.1 討論長度、應變之優缺點 60 4.2.2 兩種動作量測結果討論 60 4.2.3 呼吸道與軟組織在超音波影像的判斷比較 61 4.2.4 研究限制 61 4.2.5 工作流程的改善 62 Chapter 5 結論與未來工作 63 5.1 未來工作 63 5.1.1 機器學習自動尋找舌肌超音波影像參數 63 5.1.2 斑點追蹤速度 64 5.1.3 探頭設計 64 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 斑點追蹤 | zh_TW |
| dc.subject | 最大舌壓量測 | zh_TW |
| dc.subject | 口鼻不進氣 | zh_TW |
| dc.subject | 睡眠呼吸中止症 | zh_TW |
| dc.subject | 舌頭 | zh_TW |
| dc.subject | 應變曲線 | zh_TW |
| dc.subject | strain curve | en |
| dc.subject | speckle tracking | en |
| dc.subject | Maximum Tongue Pressure Measurement | en |
| dc.subject | Muller maneuver | en |
| dc.subject | obstructive sleep apnea | en |
| dc.subject | tongue | en |
| dc.subject | Ultrasound | en |
| dc.title | 以超音波舌肌功能影像來評估睡眠呼吸中止症 | zh_TW |
| dc.title | Diagnosing OSA based on ultrasound functional imaging of tongue muscle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.oralexamcommittee | 李佩玲(Pei-Lin Lee),張瑞峰(Ruey-Feng Chang) | |
| dc.subject.keyword | 超音波,應變曲線,舌頭,睡眠呼吸中止症,口鼻不進氣,最大舌壓量測,斑點追蹤, | zh_TW |
| dc.subject.keyword | Ultrasound,strain curve,tongue,obstructive sleep apnea,Muller maneuver,Maximum Tongue Pressure Measurement,speckle tracking, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201901154 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-01-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 4.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
