請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21037完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林能白 | |
| dc.contributor.author | Mei-Fang Chen | en |
| dc.contributor.author | 陳美芳 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:16:58Z | - |
| dc.date.copyright | 2017-03-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-21 | |
| dc.identifier.citation | References
Abroms, L. C., Padmanabhan, N., Thaweethai, L., & Phillips, T. (2011). iPhone apps for smoking cessation: a content analysis. American Journal of Preventive Medicine, 40(3), 279-285. Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, NJ: Prentice Hall. Ajzen, I. (2001). Nature and operation of attitudes. Annual Review of Psychology, 52, 27-58. Ahadzadeh, A. S., Sharif, S. P., Ong, F. S., & Khong, K. W. (2015). Integrating health belief model and technology acceptance model: An investigation of health-related Internet use. Journal of Medical Internet Research, 17(2), e45. Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies?. Decision Sciences, 30(2), 361-391. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411. Atienza, A. A., King, A. C., Oliveira, B. M., Ahn, D. K., & Gardner, C. D. (2008). Using hand-held computer technologies to improve dietary intake. American Journal of Preventive Medicine, 34(6), 514-518. Azar, K. M., Lesser, L. I., Laing, B. Y., Stephens, J., Aurora, M. S., Burke, L. E., & Palaniappan, L. P. (2013). Mobile applications for weight management: theory-based content analysis. American Journal of Preventive Medicine, 45(5), 583-589. Basu, A., & Dutta, M. J. (2008). The relationship between health information seeking and community participation: The roles of health information orientation and efficacy. Health Communication, 23(1), 70-79. Belk, R.W. (1985). Issues in the intention–behavior discrepancy. Research in Consumer Behavior, 1, 1-34. Bender, J. L., Yue, R. Y. K., To, M. J., Deacken, L., & Jadad, A. R. (2013). A lot of action, but not in the right direction: systematic review and content analysis of smartphone applications for the prevention, detection, and management of cancer. Journal of Medical Internet Research, 15(12), e287. Bock, B. C. (2009). Opportunities and challenges in behavioral informatics: Observations on the pounds off digitally study. American Journal of Preventive Medicine, 37(4), 377-378. Boulos, M. N., Wheeler, S., Tavares, C., & Jones, R. (2011). How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomedical Engineering Online, 10(1), 24. Boushey, C. J., Kerr, D. A., Wright, J., Lutes, K. D., Ebert, D. S., & Delp, E. J. (2009). Use of technology in children’s dietary assessment. European Journal of Clinical Nutrition, 63, S50-S57. Bureau of Health Promotion, Department of Health, Taiwan (2012). Overview of Health Promotion in Taiwan. Caballero, B. (2007). The global epidemic of obesity: An overview. Epidemiologic Review, 29, 1-5. Chen, I. J., Yang, K. F., Tang, F. I., Huang, C. H., & Yu, S. (2008). Applying the technology acceptance model to explore public health nurses’ intentions towards web-based learning: A cross-sectional questionnaire survey. International Journal of Nursing Studies, 45(6), 869-878. Chiou, S.-T. (2012). 2012 Taiwan-Europe Health Dialogue in Taipei. (accessed May 1, 2015). http://www.chinapost.com.tw/print/347227.htm Cho, J., Quinlan, M. M., Park, D., & Noh, G. Y. (2014a). Determinants of adoption of smartphone health apps among college students. American Journal of Health Behavior, 38(6), 860-870. Cho, J., Park, D., & Lee, H. E. (2014b). Cognitive factors of using health apps: Systematic analysis of relationships among health consciousness, health information orientation, eHealth literacy, and health app use efficacy. Journal of Medical Internet research, 16(5), e125. Cho, J., Lee, H. E., Kim, S. J., & Park, D. (2015). Effects of body image on college students' attitudes toward diet/fitness apps on smartphones. Cyberpsychology, Behavior, and Social Networking, 18(1), 41-45. Chuttur, M. (2009). Overview of the technology acceptance model: Origins, developments and future directions. Indiana University, USA. Sprouts: Working Papers on Information Systems, 9(37). http://sprouts.aisnet.org/9-37 Cowan, L. T., van Wagenen, S. A., Brown, B. A., Hedin, R. J., Seino-Stephan, Y., Hall, P. C., & West, J. H. (2013). Apps of steel: Are exercise apps providing consumers with realistic expectations? A content analysis of exercise apps for presence of behavior change theory. Health Education & Behavior, 40(2), 133-139. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-machine Studies, 38(3), 475-487. Dutta-Bergman, M. J. (2004). Primary sources of health information: Comparisons in the domain of health attitudes, health cognitions, and health behaviors. Health Communication, 16(3), 273-288. Eagly, A.H., & Chaiken, S. (1993). The Psychology of Attitudes. Fort Worth, TX: Harcourt Brace Jovanovich. Fanning, J., Mullen, S. P., & McAuley, E. (2012). Increasing physical activity with mobile devices: a meta-analysis. Journal of Medical Internet Research, 14(6), e161. FIND, Institute for Information Industry (2013). Observation on Mobile Internet in Taiwan: 2013 Q1. http://web.iii.org.tw/News/find_more?id=74 Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley. Fjeldsoe, B. S., Miller, Y. D., & Marshall, A. L. (2010). MobileMums: a randomized controlled trial of an SMS-based physical activity intervention. Annals of Behavioral Medicine, 39(2), 101-111. Flegal, K. M., Carroll, M. D., Ogden, C. L., & Curtin, L. R. (2010). Prevalence and trends in obesity among US adults. JAMA, 303(3), 235-241. Fox, S., & Duggan, M. (2012). Mobile health 2012. Washington, DC: Pew Internet & American Life Project. (accessed May 1, 2015). http://www.pewinternet.org/files/old-media/Files/Reports/2012/PIP_MobileHealth2012_FINAL.pdf Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. Free, C., Knight, R., Robertson, S., Whittaker, R., Edwards, P., Zhou, W., ... & Roberts, I. (2011). Smoking cessation support delivered via mobile phone text messaging (txt2stop): a single-blind, randomised trial. The Lancet, 378(9785), 49-55. Free, C., Phillips, G., Galli, L., Watson, L., Felix, L., Edwards, P., ... & Haines, A. (2013). The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Medicine, 10(1), e1001362. Fr?island, D. H., Årsand, E., & Skårderud, F. (2012). Improving diabetes care for young people with type 1 diabetes through visual learning on mobile phones: mixed-methods study. Journal of Medical Internet Research, 14(4), e111. Fukuoka, Y., Komatsu, J., Suarez, L., Vittinghoff, E., Haskell, W., Noorishad, T., & Pham, K. (2011). The mPED randomized controlled clinical trial: applying mobile persuasive technologies to increase physical activity in sedentary women protocol. BMC Public Health, 11(1), 933. Goode, A. D., Reeves, M. M., & Eakin, E. G. (2012). Telephone-delivered interventions for physical activity and dietary behavior change: an updated systematic review. American Journal of Preventive Medicine, 42(1), 81-88. Hall, K. D. (2013). Diet versus exercise in “the biggest loser” weight loss competition. Obesity, 21(5), 957-959. Holden, R. J., & Karsh, B. T. (2010). The technology acceptance model: its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 91-112. Hurling, R., Catt, M., De Boni, M., Fairley, B. W., Hurst, T., Murray, P., ... & Sodhi, J. S. (2007). Using internet and mobile phone technology to deliver an automated physical activity program: randomized controlled trial. Journal of Medical Internet research, 9(2), e7. Istepanian, R., Laxminarayan, S., & Pattichis, C. S. (2006). M-health: Emerging mobile health systems. Berlin, Germany: Springer. Jayanti, R. K., & Burns, A. C. (1998). The antecedents of preventive health care behavior: An empirical study. Journal of the Academy of Marketing Science, 26(1), 6-15. Kang, H., Hahn, M., Fortin, D. R., Hyun, Y. J., & Eom, Y. (2006). Effects of perceived behavioral control on the consumer usage intention of e-coupons. Psychology & Marketing, 23(10), 841-864. Kirsh, V. A., Peters, U., Mayne, S. T., Subar, A. F., Chatterjee, N., Johnson, C. C., & Hayes, R. B. (2007). Prospective study of fruit and vegetable intake and risk of prostate cancer. Journal of the National Cancer Institute, 99(15), 1200-1209. Kirwan, M., Vandelanotte, C., Fenning, A., & Duncan, M. J. (2013). Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. Journal of Medical Internet Research, 15(11), e235. Klasnja, P., & Pratt, W. (2012). Healthcare in the pocket: mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics, 45(1), 184-198. Kuo, K. M., Liu, C. F., & Ma, C. C. (2013). An investigation of the effect of nurses’ technology readiness on the acceptance of mobile electronic medical record systems. BMC Medical Informatics and Decision Making, 13(1), 88. Lathia, N., Pejovic, V., Rachuri, K. K., Mascolo, C., Musolesi, M., & Rentfrow, P. J. (2013). Smartphones for large-scale behavior change interventions. IEEE Pervasive Computing, (3), 66-73. Leslie, I., Sherrington, S., Dicks, D., Gray, N., & Chang, T.-T. (2011). Mobile communications for medical care: A study of current and future healthcare and health promotion applications, and their use in China and elsewhere. http://www.csap.cam.ac.uk/media/uploads/files/1/mobile-communications-for-medical-care.pdf (accessed May 1, 2015). Liang, X., Wang, Q., Yang, X., Cao, J., Chen, J., Mo, X., ... & Gu, D. (2011). Effect of mobile phone intervention for diabetes on glycaemic control: a meta‐analysis. Diabetic Medicine, 28(4), 455-463. Lin, J. S. C., & Chang, H. C. (2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality: An International Journal, 21(4), 424-444. Lin, C. H., Shih, H. Y., Sher, P. J., & Wang, Y. L. (2005). Consumer adoption of e-service: integrating technology readiness with the technology acceptance model. In Technology Management: A Unifying Discipline for Melting the Boundaries, Portland, Oregon, USA, (pp. 483-488). IEEE. Lin, C. H., Shih, H. Y., & Sher, P. J. (2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology & Marketing, 24(7), 641-657. Marcoulides, G.A. and Schumacker, R.E. (1996). Advanced Structural Equation Modeling. Erlbaum, Mahwah, NJ. Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. Massey, A. P., Khatri, V., & Montoya‐Weiss, M. M. (2007). Usability of online services: The role of technology readiness and context. Decision Sciences,38(2), 277-308. Mellen, P. B., Walsh, T. F., & Herrington, D. M. (2008). Whole grain intake and cardiovascular disease: a meta-analysis. Nutrition, Metabolism and Cardiovascular Diseases, 18(4), 283-290. mHealth App Developer Economics (2014). The State of the Art of mHealth App Publishing. http://research2guidance.com/r2g/research2guidance-mHealth-App-Developer-Economics-2014.pdf (accessed May 1, 2015). Middelweerd, A., Mollee, J. S., van der Wal, C., Brug, J., & Te Velde, S. J. (2014). Apps to promote physical activity among adults: a review and content analysis. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 97. Norman, G. J., Zabinski, M. F., Adams, M. A., Rosenberg, D. E., Yaroch, A. L., & Atienza, A. A. (2007). A review of eHealth interventions for physical activity and dietary behavior change. American Journal of Preventive Medicine, 33(4), 336-345. Nunnally, J. C. (1978). Psychometric Theory, 2nd ed., McGraw-Hill, New York, N.Y. Or, C. K., Karsh, B. T., Severtson, D. J., Burke, L. J., Brown, R. L., & Brennan, P. F. (2011). Factors affecting home care patients' acceptance of a web-based interactive self-management technology. Journal of the American Medical Informatics Association, 18(1), 51-59. Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320. Parasuraman, A., & Colby, C. L. (2001). Techno-ready Marketing: How and Why Your Customers Adopt Technology. New York: Free Press. Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index TRI 2.0. Journal of Service Research, 18(1), 59-74. Perugini, M., & Bagozzi, R. P. (2001). The role of desires and anticipated emotions in goal‐directed behaviours: Broadening and deepening the theory of planned behaviour. British Journal of Social Psychology, 40(1), 79-98. Physical Activity Guidelines Advisory Committee Report (2008). U.S. Department of Health and Human Services, Washington DC. Poslusna, K., Ruprich, J., de Vries, J. H., Jakubikova, M., & van't Veer, P. (2009). Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. British Journal of Nutrition, 101(S2), S73-S85. Riley, W. T., Rivera, D. E., Atienza, A. A., Nilsen, W., Allison, S. M., & Mermelstein, R. (2011). Health behavior models in the age of mobile interventions: are our theories up to the task? Translational Behavioral Medicine, 1(1): 53-71. Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science,33(2), 206-221. Schumacker, R.E., & Lomax, R.G. (2004). A beginner's guide to structural equation modeling, Second edition. Mahwah, NJ: Lawrence Erlbaum Associates. Sisson, S. B., & Katzmarzyk, P. T. (2008). International prevalence of physical activity in youth and adults. Obesity Reviews, 9(6), 606-614. Smith, A. (2015). The Pew Research Center, U.S. Smartphone Use in 2015. (Accessed on 2nd, November, 2016). http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/ Steffen, L. M., Jacobs, D. R., Stevens, J., Shahar, E., Carithers, T., & Folsom, A. R. (2003). Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. The American Journal of Clinical Nutrition, 78(3), 383-390. Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2013). Can mobile health technologies transform health care? JAMA, 310(22), 2395-2396. Swinburn, B. A., Caterson. I., Seidell. J. C., & James, W. P. T. (2004). Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition, 7, 123-146. The International HPH Network (2012). The International Health Promotion Hospitals and Health Services. (Accessed on 3rd, January, 2017). http://www.hphnet.org/ The National Communications Commission (NCC, 2016). 4G Enriching Taiwan. (Accessed on 2nd, November, 2016). http://www.ncc.gov.tw/english/content.aspx?site_content_sn=381 The World Economic Forum (2013). The Global Information Technology Report (2013), Growth and Jobs in a Hyperconnected World. Accessed on 27th, April, 2015. http://www3.weforum.org/docs/WEF_GITR_Report_2013.pdf Trichopoulou, A., Naska, A., Antoniou, A., Friel, S., Trygg, K., & Turrini, A. (2003). Vegetable and fruit: the evidence in their favour and the public health perspective. International Journal for Vitamin and Nutrition Research, 73(2), 63-69. Tung, F. C., Chang, S. C., & Chou, C. M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International Journal of Medical Informatics, 77(5), 324-335. Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. Vodafone (2006). The role of mobile phones in increasing accessibility and efficiency in healthcare (The Vodafone Policy Paper Series). Retrieved from http://www.vodafone.com/content/dam/vodafone/about/public_policy/policy_papers/public_policy_series_4.pdf (accessed May 1, 2015) Waegemann, C. P. (2010). mHealth: the next generation of telemedicine? Telemedicine and e-Health, 16, 23-25. Wang, D. H., Kogashiwa, M., & Kira, S. (2006). Development of a new instrument for evaluating individuals’ dietary intakes. Journal of the American Dietetic Association, 106(10), 1588-1593. Webb, T., Joseph, J., Yardley, L., & Michie, S. (2010). Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. Journal of Medical Internet Research, 12(1), e4. West, J. H., Hall, P. C., Hanson, C. L., Barnes, M. D., Giraud-Carrier, C., & Barrett, J. (2012). There’s an app for that: content analysis of paid health and fitness apps. Journal of Medical Internet Research, 14(3), e72. Whittaker, R., Borland, R., Bullen, C., Lin, R. B., McRobbie, H., & Rodgers, A. (2009). Mobile phone-based interventions for smoking cessation. Cochrane Database System Review, 4: CD006611. World Health Organization, (2016). Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed July 15 2016). Xue, L., Yen, C. C., Chang, L., Chan, H. C., Tai, B. C., Tan, S. B., ... & Choolani, M. (2012). An exploratory study of ageing women's perception on access to health informatics via a mobile phone-based intervention. International Journal of Medical Informatics, 81(9), 637-648. Yi, Y., Tung, L. L., & Wu, Z. (2003). Incorporating technology readiness (TR) into TAM: are individual traits important to understand technology acceptance?.DIGIT 2003 Proceedings, 2. Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: a meta-analysis of the TAM: Part 1. Journal of Modelling in Management, 2(3), 251-280. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21037 | - |
| dc.description.abstract | 隨著過重以及肥胖的比率逐年增加,公共衛生研究人員致力於利用新科技發展創新的方法以幫助人們達到健康的體重。行動科技與健康促進應用軟體(apps)提供一個即時蒐集、傳遞、評估、客製化回饋以及在適時提供建議以有效改善人們健康自我管理以及健康行為改變的機會。使用行動科技以及行動健康應用軟體的趨勢,吸引了實務工作者、研究者以及政策制定者的注意。儘管健康相關的應用軟體(apps) 在健康自我管理介入上是相對有效果的工具,但對於究竟是甚麼因素影響個人是否會使用這類健康相關的應用軟體的所知仍相當有限。
理論在公共衛生介入以及研究上扮演一個非常重要的角色。先前的研究以科技接受模式(Technology Acceptance Model, TAM)或是科技準備接受模式(Technology Readiness Acceptance Model (TRAM)為基礎,解釋人們之所以會使用飲食與健康應用軟體(apps)的意願,但卻未能考量健康意識(health consciousness)這個認知因素。本研究以科技準備接受模式(Technology Readiness Acceptance Model, TRAM)為基礎,提出一個包括健康意識在內的延伸科技準備接受模式以補足先前研究未將認知因素納入的缺口並改善影響個人對飲食與健康應用軟體(apps)使用意願的預測能力。 本研究一共在台灣蒐集了994份網路自陳式問卷供研究分析之用。線性結構模式分析結果顯示將健康意識納入的延伸科技準備接受模式的預測能力比原來的科技準備接受模式好。科技準備的促進因素,樂觀與創新,對於知覺飲食與健康應用軟體(apps)的易用性有正面影響;樂觀對於知覺飲食與健康應用軟體(apps)的有用性有正面影響。科技準備的抑制因素,不舒服,對於知覺飲食與健康應用軟體(apps)的易用性有負面影響。科技接受模式中的知覺飲食與健康應用軟體(apps)的易用性與有用性對於飲食與健康應用軟體(apps)的態度有正面影響;此一態度會進而影響對於飲食與健康應用軟體(apps)的使用意願。 本研究結果提供公共衛生部門、應用軟體開發業者以及相關行銷推廣人員一些管理意涵與建議。 | zh_TW |
| dc.description.abstract | With increasing rates of overweight and obesity, public health researchers are engaging in developing innovative method by new technology to help people to achieve healthy weights. Mobile technology and health promotion apps provide a good opportunity to collect and deliver people's individualized health information as well as real-time assessment, tailored feedback, and advice at the appropriate time to improve self-management and health behavior change over time. A growing trend for the use of mobile technology and mHealth has attracted the attention of practitioners, researchers and policymakers globally. Despite that health-related apps are relatively effective tools in health self-management interventions, a better understanding of what factors determine individuals to use such health-related apps are still limited.
Theory plays a critical role in public health interventions and research. Previous studies adopted the Technology Acceptance Model (TAM) or Technology Readiness Acceptance Model (TRAM) independently to explain people's intention to use the mhealth apps and without taking into account people's cognition factor, health consciousness. This study proposed an extended research framework of TRAM which includes an individual’s health consciousness to fill the gap of previous studies and to improve the prediction power of an individual's usage intention of the dietary and fitness apps. A total of 994 participants who completed self-reported online questionnaire surveys in Taiwan. The results of structural equation modeling (SEM) indicated that the prediction power of the proposed extended TRAM model which includes health consciousness has better prediction power than that of the original TRAM model. The drivers of an individual's technology readiness, optimism and innovativeness, have positive impacts on his or her perceived ease of using the dietary and fitness apps. An individual's optimism also has positive impact on his or her perceived usefulness of using the dietary and fitness apps. One of the inhibitors of an individual's technology readiness, discomfort, has negative impact on his or her perceived ease of using the dietary and fitness apps. The components of TAM model, an individual's perceived ease of usefulness of using the dietary and fitness apps, has positive contributions on his or her attitude toward using the dietary and fitness apps, which in turn has positive contribution to his or her intention to use the dietary and fitness apps. Based on the study results, this study can provide some managerial implications and suggestions for the public health sector, the dietary and fitness developers and the promotion marketers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:16:58Z (GMT). No. of bitstreams: 1 ntu-106-D00848011-1.pdf: 2034256 bytes, checksum: 4dab3380d9c51ce560970e8f8ed8f154 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
Approval of Examination Committee......................................................................... i Acknowledgment.........................................................................................................ii Chinese Abstract......................................................................................................... iii English Abstract...........................................................................................................v Chapter 1 Introduction.................................................................................................1 1.1 Research Background........................................................................................1 1.2 Research Motives..............................................................................................5 1.3 Research Objectives..........................................................................................8 Chapter 2 Literature Review......................................................................................11 2.1 Dietary and Fitness Apps Intervention........................................................... 11 2.2 Technology Acceptance Model (TAM)...........................................................15 2.3 Technology Readiness and Acceptance Model (TRAM) ...............................18 2.4 Health Consciousness......................................................................................22 Chapter 3 Methodology..............................................................................................24 3.1 Research Framework and Hypotheses Development......................................24 3.2 Data Collection................................................................................................27 3.3 Measurement Scales........................................................................................28 3.4 Data Analysis Procedure and Statistical Method.............................................31 Chapter 4 Data Analysis and Results..........................................................................32 4.1 Sample Profile and Descriptive Statistics.........................................................32 4.2 Structural Equation Modeling……...................................................................34 4.2.1 Measurement Model Analysis..................................................................34 4.2.2 Structural Model Analysis........................................................................38 4.3 Chi-square Difference Tests.............................................................................45 Chapter 5 Discussions and Conclusions.....................................................................46 5.1 Research Findings and Discussions.................................................................46 5.2 Managerial Implications..................................................................................49 5.3 Research Contributions and Research Limitations …………………..............51 References...................................................................................................................53 Appendix.....................................................................................................................64 | |
| dc.language.iso | en | |
| dc.subject | 科技準備接受模式 | zh_TW |
| dc.subject | 健康意識 | zh_TW |
| dc.subject | 飲食與健康應用軟體 | zh_TW |
| dc.subject | Dietary and Fitness apps | en |
| dc.subject | Technology Readiness Acceptance Model (TRAM) | en |
| dc.subject | Health Consciousness | en |
| dc.title | 延伸TRAM模式以預測飲食與健康應用軟體的使用意願: 健康意識的重要性 | zh_TW |
| dc.title | Extending TRAM Model to Predict Usage Intention of the Dietary and Fitness Apps: Does Health Consciousness Matter? | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李美璇,郝宏恕,張睿詒,董鈺琪 | |
| dc.subject.keyword | 科技準備接受模式,飲食與健康應用軟體,健康意識, | zh_TW |
| dc.subject.keyword | Technology Readiness Acceptance Model (TRAM),Dietary and Fitness apps,Health Consciousness, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201700172 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-01-23 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 健康政策與管理研究所 | zh_TW |
| 顯示於系所單位: | 健康政策與管理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
