Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21031
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡幸真(Hsing-Chen Tsai)
dc.contributor.authorChia-Chi Fanen
dc.contributor.author范珈齊zh_TW
dc.date.accessioned2021-06-08T03:16:37Z-
dc.date.copyright2020-09-02
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationNews, T. Taiwan has 15th highest lung cancer rate in w... Taiwan News https://www.taiwannews.com.tw/en/news/3825780.
Tseng, C.-H. et al. The Relationship Between Air Pollution and Lung Cancer in Nonsmokers in Taiwan. J. Thorac. Oncol. 14, 784–792 (2019).
Rothschild, S. I. Targeted Therapies in Non-Small Cell Lung Cancer—Beyond EGFR and ALK. Cancers 7, 930–949 (2015).
Movsas, B. et al. The benefit of treatment intensification is age and histology-dependent in patients with locally advanced non-small cell lung cancer (NSCLC): a quality-adjusted survival analysis of radiation therapy oncology group (RTOG) chemoradiation studies. Int. J. Radiat. Oncol. 45, 1143–1149 (1999).
Mok, T. S. et al. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. N. Engl. J. Med. 376, 629–640 (2017).
Socinski, M. A. et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).
Facciabene, A., Motz, G. T. Coukos, G. T-Regulatory Cells: Key Players in Tumor Immune Escape and Angiogenesis. Cancer Res. 72, 2162–2171 (2012).
Charette, M. de Houot, R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica 103, 1256–1268 (2018).
Feinberg, A. P., Ohlsson, R. Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).
Nishigaki, M. et al. Discovery of Aberrant Expression of R-RAS by Cancer-Linked DNA Hypomethylation in Gastric Cancer Using Microarrays. Cancer Res. 65, 2115–2124 (2005).
Jones, P. A., Ohtani, H., Chakravarthy, A. De Carvalho, D. D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151–161 (2019).
Kim, H. et al. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat. Oncol. 7, 39 (2012).
Tsai, H. C. et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21, 430–46 (2012).
Murphy, A. G. Zheng, L. Small molecule drugs with immunomodulatory effects in cancer. Hum. Vaccines Immunother. 11, 2463–2468 (2015).
Lee, S. et al. DNA methyltransferase inhibition accelerates the immunomodulation and migration of human mesenchymal stem cells. Sci. Rep. 5, 8020 (2015).
Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).
Belizário, J. Destro Rodrigues, M. F. Checkpoint inhibitor blockade and epigenetic reprogrammability in CD8+ T-cell activation and exhaustion. Ther. Adv. Vaccines Immunother. 8, 2515135520904238 (2020).
Silva-Santos, B., Mensurado, S. Coffelt, S. B. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 19, 392–404 (2019).
Correia, D. V., Lopes, A. Silva-Santos, B. Tumor cell recognition by γδ T lymphocytes. Oncoimmunology 2, (2013).
Kabelitz, D. Dechanet-Merville, J. Recent Advances in γδ T Cell Biology: New Ligands, New Functions, and New Translational Perspectives. (Frontiers Media SA, 2016).
Lo Presti, E. et al. gammadelta T Cells and Tumor Microenvironment: From Immunosurveillance to Tumor Evasion. Front Immunol 9, 1395 (2018).
Heinhuis, K. M. et al. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol. 30, 219–235 (2019).
Zhao, Y., Niu, C. Cui, J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J. Transl. Med. 16, 3 (2018).
Wu, Y. et al. An innate-like Vdelta1(+) gammadelta T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci Transl Med 11, (2019).
Wu, D. et al. Ex vivo expanded human circulating Vδ1 γδT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology 4, (2015).
γδ T cells bring unconventional cancer-targeting to the clinic — again | Nature Biotechnology. https://www.nature.com/articles/s41587-020-0487-2.
You, C., Yang, Y. Gao, B. Imperatorin Targets MCL-1 to Sensitize CD133+ Lung Cancer Cells to γδ-T Cell-Mediated Cytotoxicity. Cell. Physiol. Biochem. 49, 235–244 (2018).
Zhang, T. et al. CXC Chemokine Ligand 12 (Stromal Cell-Derived Factor 1α) and CXCR4-Dependent Migration of CTLs toward Melanoma Cells in Organotypic Culture. J. Immunol. 174, 5856–5863 (2005).
Goldstein, J. S., Chen, T., Gubina, E., Pastor, R. W. Kozlowski, S. ICAM-1 enhances MHC-peptide activation of CD8+ T cells without an organized immunological synapse. Eur. J. Immunol. 30, 3266–3270 (2000).
Lo, W.-L. et al. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat. Immunol. 19, 733–741 (2018).
van Buul, J. D. et al. Inside-out regulation of ICAM-1 dynamics in TNF-alpha-activated endothelium. PLoS One 5, e11336 (2010).
Kaatz, M. et al. Microtubules Regulate Expression of ICAM-1 in Epidermoid Cells (KB Cells). Skin Pharmacol. Physiol. 19, 322–328 (2006).
Deniger, D. C. et al. Activating and propagating polyclonal gamma delta T cells with broad specificity for malignancies. Clin Cancer Res 20, 5708–19 (2014).
Lalor, S. J. McLoughlin, R. M. Memory γδ T Cells–Newly Appreciated Protagonists in Infection and Immunity. Trends Immunol. 37, 690–702 (2016).
Penido, C. et al. Involvement of CC chemokines in γδ T lymphocyte trafficking during allergic inflammation: the role of CCL2/CCR2 pathway. Int. Immunol. 20, 129–139 (2008).
Alnaggar, M. et al. Allogenic Vγ9Vδ2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J. Immunother. Cancer 7, 36 (2019).
Katz, T. A. et al. Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res. Treat. 146, 99–108 (2014).
Robert, M.-F. et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat. Genet. 33, 61–65 (2003).
Agrawal, K., Das, V., Vyas, P. Hajdúch, M. Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol. Ther. 188, 45–79 (2018).
Chae, Y. K. et al. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer. Sci. Rep. 8, 1023 (2018).
Riccadonna, C. et al. Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing. PLoS ONE 11, (2016).
Roland, C. L., Harken, A. H., Sarr, M. G. Barnett, C. C. ICAM-1 expression determines malignant potential of cancer. Surgery 141, 705–707 (2007).
Knight, A., Mackinnon, S. Lowdell, M. W. Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 14, 1110–1118 (2012).
van de Stolpe, A. van der Saag, P. T. Intercellular adhesion molecule-1. J. Mol. Med. 74, 13–33 (1996).
Min, I. M. et al. CAR T Therapy Targeting ICAM-1 Eliminates Advanced Human Thyroid Tumors. Clin. Cancer Res. 23, 7569–7583 (2017).
Luoma, A. M. et al. Crystal Structure of Vδ1 T Cell Receptor in Complex with CD1d-Sulfatide Shows MHC-like Recognition of a Self-Lipid by Human γδ T Cells. Immunity 39, 1032–1042 (2013).
Bacon, L. et al. Two Human ULBP/RAET1 Molecules with Transmembrane Regions Are Ligands for NKG2D. J. Immunol. 173, 1078–1084 (2004).
Xie, J. et al. Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell. Mol. Immunol. 11, 495–502 (2014).
Hwang, J. et al. Cytochalasin B induces apoptosis through the mitochondrial apoptotic pathway in HeLa human cervical carcinoma cells. Oncol. Rep. 30, 1929–1935 (2013).
Dokouhaki, P. et al. NKG2D regulates production of soluble TRAIL by ex vivo expanded human γδ T cells. Eur. J. Immunol. 43, 3175–3182 (2013).
Ibusuki, A. et al. NKG2D Triggers Cytotoxicity in Murine Epidermal γδ T Cells via PI3K-Dependent, Syk/ZAP70-Independent Signaling Pathway. J. Invest. Dermatol. 134, 396–404 (2014).
Pauza, C. D. et al. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Front. Immunol. 9, (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21031-
dc.description.abstract肺癌在台灣為十大癌症死亡原因第一名,且有逐年增加的趨勢。癌細胞具有和其他正常細胞不同的蛋白質表現,可被免疫細胞識別並進行攻擊。然而,藉由不正常的表觀遺傳基因調控,癌細胞能隱藏這些細胞表面標記的表達,進而躲過免疫細胞的攻擊。DNA甲基化為細胞內重要的表觀遺傳修飾機轉,由DNA甲基化轉移酶(DNA methyltransferase, DNMT)催化,如果在錯誤的地方甲基化,或未進行甲基化,都可能造成細胞癌化。目前Decitabine (DAC)為已上市的DNMT 抑制劑(inhibitor),臨床上使用於原發性或續發性急性骨髓性白血病病患,在高劑量之下會造成DNA損傷,產生細胞毒性,但是在低劑量時,卻能產生有記憶性的持續抗腫瘤效果。本實驗室於先前之SILAC蛋白質體分析中,發現肺癌細胞株在給予DAC之後,其細胞表面改變的免疫相關蛋白,以伽瑪-德耳塔(gamma-delta, γδ)T細胞活化的路徑最為顯著。γδ T在人體內淋巴細胞中僅佔1-3%,此類細胞與一般αβ T不同,不需藉由樹突細胞等抗原呈現細胞提供敵物抗原,即可以活化並毒殺癌細胞,而存在肺部的多屬於Vδ1+型,根據先前文獻指出,和其他γδ T亞群相比,以Vδ1+治療癌症的存活率最高。因此本研究主要目的為,觀察受DAC處理過的肺癌細胞是否較易受到Vδ1+型γδ T細胞攻擊,並深入探討其分子機轉。 研究發現,藉由Annexin V 和 Propidium iodide的細胞凋亡實驗結果得知,DAC合併Vδ1+細胞治療,對肺癌的毒殺效果 比單獨使用DAC或是Vδ1+細胞治療更佳,而在給予DAC之後,可以發現肺癌細胞與Vδ1+細胞間形成功能性免疫突觸(functional immune synapses)的比例明顯增加;我們也進一步以縮時攝影的方式觀察到,DAC 治療後的癌細胞,被Vδ1+細胞毒殺的數目增加。我們根據先前SILAC蛋白質體分析的資訊,發現細胞黏附因子ICAM-1與DAC導致之Vδ1+細胞毒殺增強效應最具相關性。我們進一步剔除或過度表達肺癌細胞株上的ICAM-1,發現當ICAM-1被剔除後,Vδ1+對癌細胞的毒殺能力明顯降低,證實ICAM-1在γδ T對癌細胞的毒殺作用扮演重要角色。此外,我們也藉由螢光染色影像分析,發現在DAC處理後的癌細胞表面免疫突觸處,纖維形肌動蛋白(filamentous actin, F-actin)的訊號會明顯增加,這些觀察顯示,表觀遺傳藥物可藉由重塑癌細胞免疫突觸細胞骨架(cytoskeletal remodeling),增加癌細胞受到免疫毒殺的作用。動物實驗亦證實,表觀遺傳藥物與γδ T聯合治療可增加肺癌小鼠之存活率。綜合上述研究結果可知,肺癌細胞經由DAC處理之後,能夠促進Vδ1+的毒殺效果,而ICAM-1在其中扮演重要角色。未來希望能更深入了解DAC對於Vδ1+的活化機轉,並進行分子機制的觀察,以期能應用於臨床肺癌治療。zh_TW
dc.description.abstractLung cancer is the leading cause of cancer death in Taiwan, and its incidence is on the rise. Cancer cells may express surface molecules distinctive from those on normal cells and thus can be recognized and killed by immune cells. However, many cancer cells develop strategies to escape from immunosurveillance. For example, DNA methylation-mediated downregulation of surface molecules is one of the escape mechanisms that render tumor cells invisible to the body's immune system. DNA methylation is an epigenetic mechanism in which DNA methyltransferases (DNMTs) transfer methyl groups to DNA. Two DNA methyltransferase inhibitors (DNMTis), decitabine (DAC) and azacitidine (AZA), are used clinically in treating hematological malignancies. Previous studies showed that at high doses, DAC inhibits cell proliferation via incorporation into DNA, leading to DNA damages. At low doses, the drug can exert sustained changes in gene expression and produce a memory type of antitumor response. Through Stable Isotope Labeling by Amino acids in Cell culture (SILAC)-based quantitative surface proteomics analysis, our lab demonstrated that DAC modulates surface immune proteomes in lung cancer cell lines. Notably, the alterations are highly associated with γδ T cell activation. γδ T cells are a subset of T cells with anti-tumor effects that do not rely on major histocompatibility complexes (MHC) for antigen-recognition. They account for only 1-3% of all lymphocytes in the circulation. The majority of resident γδ T cells in the lungs are the Vδ1 subtype. We found that pretreatment of lung cancer cells with 100 nM DAC can enhance their susceptibility to Vδ1-enriched γδ T cell killing in vitro using Annexin V and propidium iodide apoptosis assays. This potentiation effect appears to result from enhanced formation of immune synapses and the cytoskeleton remodeling at the interface between cancer and γδ T cells. Furthermore, knockout of ICAM-1, an adhesion molecule at immune synapses, diminished the potentiating effects of DAC on lung cancer cells for γδ T killing. In addition, we observed a significant increase of F-actin at immune synapses, which was accompanied by global transcriptomic changes of the cytoskeleton following DAC treatment. Collectively, these data indicated that DAC could regulate patterns of cytoskeleton to stabilize the structure of immune synapses. Most importantly, combination therapy of DNMTi and adoptive γδ T transfer offered a significant survival benefit in a mouse lung cancer model. Our data suggested that DNMTis may couple with adoptive γδ T cell transfer in cancer therapeutics.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:16:37Z (GMT). No. of bitstreams: 1
U0001-1808202015344300.pdf: 20067014 bytes, checksum: 304b359ca8e0c0aa88fe12ef7f9198a0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents序言及謝詞 i
中文摘要 ii
Abstract iv
Table of contents vii
List of Figures xi
List of Tables xiv
List of Supplementary figures xv
List of Abbreviations xvi
Chapter 1. Introduction 1
1.1. Lung cancer 1
1.2. Tumor immune evasion 4
1.3. Epigenetic regulation 5
1.3.1. Epigenetics in cancer 5
1.3.2. FDA-approved DNA demethylating agents 6
1.4. γδ T 7
1.4.1. Overview of γδ T 7
1.4.2. Pro‐ and antitumor effect of γδ T cells 9
1.4.3. Vδ1+ T has potential anti-solid tumor abilities 10
1.5. Previous investigation from our laboratory 11
1.5.1. Stable isotope labeling by amino acids in cell culture (SILAC) data revealed DAC-upregulated surface molecules for γδ T actiavtion 11
1.5.2. The aim of the study 12
Chapter 2. Materials and methods 13
2.1. Cell culture 13
2.2. Decitabine (DAC) treatment on T cells 13
2.3. Isolation and ex vivo expansion of human γδ T lymphocytes from the peripheral blood mononuclear cells (PBMCs). 14
2.4. γδ T cell-mediated cytotoxicity assays 15
2.5. Knock-out and overexpression of ICAM-1 in cancer cell lines 16
2.6. Immunophenotypic and functional analysis using flow cytometry 17
2.7. Time-lapse observation system 17
2.8. Immunofluorescence staining 18
2.9. Single-cell mass cytometry (CyTOF) 19
2.10. DNA extraction and sequencing 20
2.11. Blockade of NKG2D or γδ TCR on γδ T cells 21
2.12. Combination therapy of DAC and γδ T cells adoptive transfer in a lung cancer xenograft model 22
Chapter 3. Results 23
3.1. Decitabine (DAC) enhances lung cancer cells’ susceptibility to Vδ1-enriched γδ T cell killing. 23
3.1.1. Ex vivo expanded Vδ1-enriched γδ T cells express anti-tumor cytokines. 23
3.1.2. DAC enhances susceptibility of cancer cell lines to γδ T cell killing. 24
3.1.3. DAC does not induce non-contact cytotoxicity by γδ T. 25
3.1.4. Time-lapse observation of γδ T cells attacking cancer cells. 26
3.1.5. DAC enhance γδ T -mediated cytotoxicity in vivo. 27
3.2. Immune synapses and DAC-enhanced cancer cytotolysis by γδ T cells. 28
3.2.1. ICAM-1 is required for DAC-enhanced cancer cytolysis by γδ T cells. 28
3.2.2. DAC-treated H1299 cells form more functional synapses with γδ T cells. 30
3.2.3. DAC stabilizes the immune synaptic cleft to facilitate tumor lysis via strengthening the actin cytoskeleton. 31
3.2.4. Cytochalasin B suppresses DAC-induced F-actin clustering at immune synapses. 32
3.3. The role of NKG2D and γδ TCR in DAC-enhanced γδ T engagement with cancer cells 34
3.3.1. Vδ1-enriched γδ T cells with DAC treatment tend to target NKG2D receptor. 34
Chapter 4. Discussion 35
Chapter 5. Conclusion 41
Chapter 6. Figures 42
Chapter 7. Tables 80
Reference 86
Appendix: Supplementary data 94
dc.language.isoen
dc.subject細胞間黏附分子1zh_TW
dc.subject癌症免疫治療zh_TW
dc.subject肺癌zh_TW
dc.subject伽瑪-德耳塔T細胞zh_TW
dc.subject地西他濱zh_TW
dc.subject表觀遺傳zh_TW
dc.subjectCancer immunotherapyen
dc.subjectDecitabineen
dc.subjectγδ Ten
dc.subjectICAM-1en
dc.subjectEpigeneticsen
dc.subjectLung canceren
dc.title探討地西他濱對肺癌受到γδ T細胞毒殺之增強作用zh_TW
dc.titleDecitabine enhances Vδ1-enriched γδ T cell-mediated cytotoxicity on non-small cell lung canceren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳世淯(Shih-Yu Chen),黃泰中(Tai-Chung Huang)
dc.subject.keyword肺癌,癌症免疫治療,表觀遺傳,細胞間黏附分子1,伽瑪-德耳塔T細胞,地西他濱,zh_TW
dc.subject.keywordLung cancer,Cancer immunotherapy,Epigenetics,ICAM-1,γδ T,Decitabine,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202003986
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202015344300.pdf
  未授權公開取用
19.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved