請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21029完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑 | |
| dc.contributor.author | Hong-Yu Lai | en |
| dc.contributor.author | 賴泓宇 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:16:30Z | - |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-25 | |
| dc.identifier.citation | [1] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, 2ndEd., Clarendon Press, Oxford (1993).
[2] B. Bahadur, Liquid Crystals : Applications and uses , World Scientific, Singapore (1990). [3] Pochi Yeh and Claire Gu, Optics of Liquid Crystal Displays, (1999). [4] Andrew J. Lovinger, Karl R. Amundson and Don D. Davis, Chem. Mater. 6, 1726 (1994). [5] Grant R. Fowles, Introduction to Modern Optics, 2nd Ed., University of Utah, New York (1975). [6] P. Yeh and A. Yariv, “Optical Waves in crystals,” John Wiley & Son (1984). [7] A. Sneh Sneh and K. M. Johnson, J. Lightwave Technol. 14, 1067 (1996). [8] Yariv, “Optical Electronics in Modern Communications”, 5th Ed., Oxford University Press, New York (1997) [9] Dierking, 'Polymer network-stabilized liquid crystals,' Advanced Materials, 12(3), 167-181, 2000. [10] D. K. Yang, L. C. Chien, and J. W. Doane, 'Cholesteric Liquid-Crystal Polymer Dispersion for Haze-Free Light Shutters,' Applied Physics Letters, vol. 60, pp. 3102-3104, Jun 22 1992. [11] X. Y. Nie, R. B. Lu, H. Q. Xianyu, T. X. Wu, and S. T. Wu, 'Anchoring energy and cell gap effects on liquid crystal response time,' Journal of Applied Physics, vol. 101, May 15 2007. [12] H. Nakamura, 'A model of image display in the optimized overdrive method for motion picture quality improvements in liquid crystal devices,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 6435-6440, Nov 2001. [13] Eugene Hecht, “OPTIC”, Addison-Wesley,426–430,2002. [14] Eugene Hecht, “OPTIC”, Addison-Wesley,2002. [15] Amnon Yariv, “Optical Electronics in Modern Communication” Oxford University Press(1997) [16] D. H. Lee, K. D. Vuong, J. A. A. Williams, J. Fagan, R. A. Condrate, and X. W. Wang, 'RF aerosol plasma fabrication of indium tin oxide and tin oxide thin films,' Journal of Materials Research, vol. 11, pp. 895-903, Apr 1996. [17] Y. H. Lin, J. M. Yang, Y. R. Lin, S. C. Jeng, and C. C. Liao, 'A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,' Optics Express, vol. 16, pp. 1777-1785, Feb 4 2008. [18] V. V. Presnyakov and T. V. Galstian, 'Electrically tunable polymer stabilized liquid-crystal lens,' Journal of Applied Physics, vol. 97, May 15 2005. [19] Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, 'Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,' Applied Physics Letters, vol. 84, pp. 1233-1235, Feb 23 2004. [20] H. W. Ren and S. T. Wu, 'Anisotropic liquid crystal gels for switchable polarizers and displays,' Applied Physics Letters, vol. 81, pp. 1432-1434, Aug 19 2002. [21] C. Y. Huang, R. X. Fung, and Y. G. Lin, 'Effects of curing conditions on electro optical properties of polymer-stabilized liquid crystal pi cells,' Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 5230-5232, Aug 2007. [22] J. S. Gwag, J. C. Kim and T. H. Yoon, “Pretilt angle of liquid crystal related to anisotropic polyimide layer thickness in a nematic liquid crystal cell,” Journal of Applied Polymer Science 102, 1505–1508 (2006). [23] J. S. Patel and M. W. Maeda, 'Tunable Polarization Diversity Liquid-Crystal Wavelength Filter,' IEEE Photonics Technology Letters, vol. 3, 739-740, Aug 1991. [24] P. D. Atherton, N. K. Reay, J. Ring, and T. R. Hicks, 'Tunable Fabry- Pérot Filters,' Optical Engineering, vol. 20, pp. 806-814, 1981. [25] J. Sun and S. T. Wu, 'Recent Advances in Polymer Network Liquid Crystal Spatial Light Modulators,' Journal of Polymer Science Part B-Polymer Physics, vol. 52, pp. 183-192, Feb 1 2014. [26] S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Japanese Journal of Applied Physics 43, 2004. [27] G. P. Crawford and S. Žumer, Liquid Cystal in Compliex Geometries (Taylor & Francis Publishers, London, 1996). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21029 | - |
| dc.description.abstract | 液晶技術的應用已被廣泛應用在各方面,並不在限於顯示器,像是智慧窗戶、光學門閥和可調波長濾波器,還有很多方面可應用。本研究的主要目的是利用高分子穩定型液晶有較快之反應時間,製作快速響應可調頻濾波器/光開關,可調頻元件是將液晶注入於由兩片有布拉格反射鏡結構的ITO玻璃所組成之Fabry-Pérot共振腔。內容分為三個部分作探討,第一部分,我們先將PSLC製作於一般型的液晶盒,並對各種可調參數作探討,例如不同單體材料、不同單體濃度和不同聚合電壓大小,分析各個數據的優劣,並找出最適合應用於可調式光開關與可調波長液晶濾波器的參數。
第2部分,我們發現加入聚合電壓可以有效地降低高分子液晶本身的散射效應,使得PSLC濾波器元件在外加電壓時可以保持高穿透率並調變波長,最後並探討聚合電壓大小對元件的可調變調範圍與半高寬值(FWHM)之影響。 第3部分,利用外加電壓改變腔內折射率,使共振波長位移,達到開關的特性,我們使用633nm的雷射量測元件的開關特性,在光開關的特性表現上,除了低於2ms的響應時間外,跟一般散射型的PSLC樣品相比,有較低的電壓,且有較佳的對比。 | zh_TW |
| dc.description.abstract | Liquid crystal technologies have been used in our daily life. It has not only been utilized in displays but also in other applications such as optical shutters for optical instruments, Smart Window or wavelength tunable filter. In this study, we take the advantage of fast response time of VA-PSLC and place it in Fabry- Pérot cavity to develop a fast response tunable optical switch and wavelength tunable filter. The polymer stabilized liquid crystal tunable filters was fabricated by the combination distributed Bragg reflectors with an intra-cavity liquid crystal material. It is separated into three parts. The first part of the thesis will introduce the fundamental optical properties of polymer stabilized liquid crystals in normal cell. We studied the characteristics of PSLC and the influence of parameters such as different polymer monomer, polymer concentration and curing voltage on PSLC. By comparing with the result of different parameters, we can obtain the most suitable parameter for fabricating tunable optical switch and wavelength tunable filter.
In the second part, we find the method of “curing voltage” to be able to help reduce the strong scattering effect of the VA-PSLC (Vertical Alignment PSLC) significantly. Therefore, the PSLC wavelength tunable filter can have high transmittance to modulate the resonance wavelength after applying voltage. We also discuss the influence of the magnitude of curing voltage on FWHM(Full width at half maximum) and tunable range. We study the effect of PSLC wavelength tunable filter. In the third part, we utilize the effect of the resonance wavelength shift of Fabry- Pérot device by applying voltage thus develop an externally controlled/tunable optical switch. We measure the electro-optical characteristic of tunable optical switch by applying laser light source (633nm). The performance characteristics of tunable optical switch are fast response time of less than 2 milliseconds, low operation voltage and improved contrast ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:16:30Z (GMT). No. of bitstreams: 1 ntu-106-R03941119-1.pdf: 4966891 bytes, checksum: 1edddbfa9d7cf5b07066a0829065f0e1 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 圖索引 vii 表索引 x 第一章 簡介 1 1.1 何謂液晶 1 1.2 液晶的分類 2 1.3 液晶的模態 6 1.4 液晶的物理特性 8 1.4.1 光學異向性(anisotropy) 8 1.4.2 介電常數異向性 (dielectric anisotropy, ) 11 1.4.3 秩序參數(order parameter) 12 1.5 高分子穩定液晶(Polymer Stabilized Liquid Crystal) 13 1.6 分佈式布拉格反射鏡(Distributed Bragg reflectors) 15 1.7 分佈式布拉格反射鏡原理 16 第二章 實驗架構 18 2.1 製作與準備過程 18 2.1.1 液晶盒的製作流程 18 2.1.2 製作高分子穩定型液晶 22 2.1.3 布拉格反射鏡製作流程 24 2.1.4 兩種液晶盒的封裝 27 2.2 實驗架構 30 2.2.1 觀察相位差改變之穿透率與電壓的測量 30 2.2.2 穿透率與電壓的測量 32 第三章 : 高分子穩定型液晶的實驗結果 33 3.1 高分子單體材料與濃度效應 33 3.2 外加聚合電壓的影響 37 3.3 總結 46 第四章 快速響應可調變波長濾波器 47 4.1 Fabry- Pérot共振腔簡介 47 4.2 Fabry- Pérot共振腔實驗結果 49 4.3 波長調變機制 52 4.4 可調變波長濾波器(純負型液晶)實驗結果 53 4.5 可調變波長濾波器(高分子穩定型液晶)實驗結果 55 4.6 總結 61 第五章 快速響應可調式光開關 63 5.1 未加聚合電壓之實驗結果 63 5.2 加入聚合電壓之實驗結果 66 5.3 PSLC可調式光開關之驅動電壓 71 5.4 PSLC可調式光開關之對比度 74 5.5 PSLC可調式光開關之響應時間 76 5.6 不同高分子聚合物對光開關之影響 77 第六章 結論與未來目標 79 參考文獻 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可調式光開關 | zh_TW |
| dc.subject | Fabry- Perot共振腔 | zh_TW |
| dc.subject | 布拉格反射鏡 | zh_TW |
| dc.subject | 高分子穩定型液晶 | zh_TW |
| dc.subject | 液晶 | zh_TW |
| dc.subject | 可調變波長濾波器 | zh_TW |
| dc.subject | 高分子穩定配向 | zh_TW |
| dc.subject | 聚合電壓 | zh_TW |
| dc.subject | Fabry- Perot cavity | en |
| dc.subject | Polymer stabilized liquid crystal (PSLC) | en |
| dc.subject | Distributed Bragg reflectors | en |
| dc.subject | Tunable optical switch | en |
| dc.subject | curing voltage | en |
| dc.subject | polymer sustained alignment | en |
| dc.subject | Wavelength tunable filter | en |
| dc.subject | Liquid Crystal | en |
| dc.title | 垂直配向高分子穩定型液晶應用於快速響應光開關與可調波長濾波器 | zh_TW |
| dc.title | Fast Response Optical Switch and Wavelength Tunable Filter using Vertically-Aligned Polymer Stabilized
Liquid Crystals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃定洧,蘇國棟 | |
| dc.subject.keyword | Fabry- Perot共振腔,布拉格反射鏡,高分子穩定型液晶,液晶,可調變波長濾波器,高分子穩定配向,聚合電壓,可調式光開關, | zh_TW |
| dc.subject.keyword | Fabry- Perot cavity,Distributed Bragg reflectors,Polymer stabilized liquid crystal (PSLC),Liquid Crystal,Wavelength tunable filter,polymer sustained alignment,curing voltage,Tunable optical switch, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201700249 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-01-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
