Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞
dc.contributor.authorTien-Ru Chenen
dc.contributor.author陳恬如zh_TW
dc.date.accessioned2021-06-08T03:12:04Z-
dc.date.copyright2017-09-12
dc.date.issued2017
dc.date.submitted2017-03-10
dc.identifier.citationAkmaz S, Adıgüzel ED, Yasar M, Erguven O. The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Advances in Materials Science and Engineering. 2013;2013:1-6.
Alarcon E, Griffith M, Udekwu KI. (Eds.) (2015) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Cham, Switzerland: Springer International Publishing.
Andara M, Agarwal A, Scholvin D, Gerhardt RA, Doraiswamy A, Jin C, et al. Hemocompatibility of diamondlike carbon–metal composite thin films. Diamond and Related Materials. 2006;15(11-12):1941-1948.
Anisha BS, Biswas R, Chennazhi KP, Jayakumar R. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biol Macromol. 2013;62:310-320.
Arzac GM, Fernández A. Hydrogen production through sodium borohydride ethanolysis. International Journal of Hydrogen Energy. 2015;40(15):5326-5332.
Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater. 2004;69(2):216-222.
Ballo MK, Rtimi S, Pulgarin C, Hopf N, Berthet A, Kiwi J, et al. In vitro and in vivo effectiveness of an innovative silver-copper nanoparticle coating of catheters to prevent methicillin-resistant Staphylococcus aureus Infection. Antimicrob Agents Chemother. 2016;60(9):5349-5356.
Baruwati B, Simmons SO, Varma RS, Veronesi B. “Green” synthesized and coated nanosilver alters the membrane permeability of barrier (intestinal, brain endothelial) cells and stimulates oxidative stress pathways in neurons. ACS Sustainable Chemistry & Engineering. 2013;1(7):753-759.
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580-588.
Chavez de Paz LE, Resin A, Howard KA, Sutherland DS, Wejse PL. Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol. 2011;77(11):3892-3895.
Chen Q, Jiang H, Ye H, Li J, Huang J. Preparation, antibacterial, and antioxidant activities of silver/chitosan composites. Journal of Carbohydrate Chemistry. 2014;33(6):298-312.
Duran N, Duran M, de Jesus MB, Seabra AB, Favaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789-799.
Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44(2-3):65-73.
Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:1-17.
Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20(4):291-300.
Grunkemeier GL, Jin R, Starr A. Prosthetic heart valves: objective performance criteria versus randomized clinical trial. Ann Thorac Surg. 2006;82(3):776-780.
Haider A, Kang I-K. Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Advances in Materials Science and Engineering. 2015;2015:1-16.
Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology. 2008;17(5):438-447.
Henrotin Y, Mathy M, Sanchez C, Lambert C. Chondroitin sulfate in the treatment of osteoarthritis: from in vitro studies to clinical recommendations. Ther Adv Musculoskelet Dis. 2010;2(6):335-348.
Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161-166.
Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One. 2014;9(7):e102108.
Jana S. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Trans. 2015;44(43):18692-18717.
Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322-337.
Jia R, Jiang H, Jin M, Wang X, Huang J. Silver/chitosan-based janus particles: synthesis, characterization, and assessment of antimicrobial activity in vivo and vitro. Food Research International. 2015;78:433-441.
Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences. 2016;9(3):217-227.
Kishen A, Shrestha A. (Eds.) (2015) Nanotechnology in endodontics : current and potential clinical applications. Cham, Switzerland: Springer International Publishing; 2015.
Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B-Biointerfaces. 2008;65(1):150-153.
Kurita K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science. 2001;26(9):1921-1971.
Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012;6(6):667-669.
Li B, Wang X, Chen R, Huangfu W, Xie G. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydrate Polymers. 2008;72(2):287-292.
Liu J, Jiang G. (Eds.) (2015) Silver nanoparticles in the environment. Heidelberg, Germany: Springer Berlin Heidelberg.
Lu S, Gao W, Gu HY. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns. 2008;34(5):623-628.
Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett. 2010;487(1-3):92-96.
Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T. The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm. 2004;281(1-2):45-54.
Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology. 2003;69(7):4278-4281.
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116-127.
Mofazzal Jahromi MA, Karimi M, Azadmanesh K, Naderi Manesh H, Hassan ZM, Moazzeni SM. The effect of chitosan-tripolyphosphate nanoparticles on maturation and function of dendritic cells. Comparative Clinical Pathology. 2013;23(5):1421-1427.
Molleman B, Hiemstra T. Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver Ions. Langmuir. 2015;31(49):13361-13372.
Novo M, Lahive E, Diez-Ortiz M, Matzke M, Morgan AJ, Spurgeon DJ, et al. Different routes, same pathways: molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environmental Pollution. 2015;205:385-393.
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-1720.
Pannerselvam B, Dharmalingam Jothinathan MK, Rajenderan M, Perumal P, Pudupalayam Thangavelu K, Kim HJ, et al. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats. Eur J Pharm Sci. 2017;100:187-196.
Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Research. 2009;43(4):1027-1032.
Paula MMD, da Costa CS, Baldin MC, Scaini G, Rezin GT, Segala K, et al. In vitro Effect of Silver Nanoparticles on Creatine Kinase Activity. Journal of the Brazilian Chemical Society. 2009;20(8):1556-1560.
Piao MJ, Kim KC, Choi JY, Choi J, Hyun JW. Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells. Toxicol Lett. 2011;207(2):143-148.
Raafat D, Sahl HG. Chitosan and its antimicrobial potential--a critical literature survey. Microb Biotechnol. 2009;2(2):186-201.
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2016:1-20.
Rahban M, Divsalar A, Saboury AA, Golestani A. Nanotoxicity and spectroscopy studies of silver nanoparticle: calf thymus DNA and K562 as targets. Journal of Physical Chemistry C. 2010;114(13):5798-5803.
Rashid MU, Bhuiyan MKH, Quayum ME. Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka University Journal of Pharmaceutical Sciences 2013;12(1):29-33.
Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61(4):869-876.
S Hungund B. Comparative evaluation of antibacterial activity of silver nanoparticles biosynthesized using fruit juices. Journal of Nanomedicine & Nanotechnology. 2015;06(02):1-6.
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:1-12.
Sau TK, Rogach AL. (Eds.) (2012) Complex-shaped metal nanoparticles: bottom-up syntheses and applications. Weinheim, Germany: Wiley.
Scientific Committee on Emerging and Newly Identified Health Risks S. Nanosilver: safety, health and environmental effects and role in antimicrobial resistance 2014:1-103.
Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects. Journal of Pharmacy and Pharmacology. 2001;53:1047-1069.
Solioz M, Odermatt A. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem. 1995;270(16):9217-9221.
Wang LS, Wang CY, Yang CH, Hsieh CL, Chen SY, Shen CY, et al. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int J Nanomedicine. 2015;10:2685-2696.
Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protocols. 2008;3(2):163-175.
Wimardhani YS, Suniarti DF, Freisleben HJ, Wanandi SI, Siregar NC, keda M-A. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. Journal of Oral Science. 2014;56(2):119-126.
Yen M-T, Yang J-H, Mau J-L. Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers. 2008;74(4):840-844.
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar Drugs. 2015;13(3):1133-1174.
Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews. 2015;2(3):204-226.
紀傑元. 晶種成長法合成一維金奈米棒與性質分析之探討. 新竹市: 國立交通大學; 2007.
游朝慶. 抗菌敷料主要競爭廠商之專利分析. 雲林縣: 國立雲林科技大學; 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20951-
dc.description.abstract銀的抗菌性已被發現數千年之久,本篇選用具有生物相容性的幾丁聚醣在鹼性環境下還原硝酸銀成為奈米銀(CS-AgNPs),所形成的CS-AgNPs與銀離子(Ag+)、奈米銀(AgNPs)比較其抗菌性與細胞毒性;除此之外生物實驗中也另外比較幾丁聚醣(CS)與奈米幾丁聚醣(CS-TPP NPs)。
物性測試的部分分別以粒徑分析儀、穿透式電子顯微鏡、紫外光/可見光光譜儀、紅外線分光光譜儀、火焰式原子吸收光譜進行分析。在生物性實驗的部分,以L929細胞進行細胞毒性試驗並利用細胞存活率計算IC50;抗菌性實驗檢測大腸桿菌與金黃色葡萄球菌的最小抑菌濃度(MIC)、最小殺菌濃度(MBC)與抑制圈大小。
CS-AgNPs系列中的AgNPs大小約為10 nm左右,而AgNPs與CS-TPP NPs的大小分別為40~50 nm與200~300 nm。生物性實驗比較細菌抗性與細胞毒性的結果發現,含銀系列樣品的抗菌效果與細胞毒性皆大於幾丁聚醣系列。在含銀樣品的結果中Ag+和AgNPs相互比較,MBC與抑制圈的結果呈現Ag+優於AgNPs,在細胞毒性上48小時的毒性比較未見統計差異;Ag+與CS-AgNPs相互比較,在MIC與MBC的結果發現,CS-AgNPs的抗菌性更勝Ag+,而48小時細胞毒性中Ag+與CS-AgNPs的IC50數值皆在0.3~0.5 µg/mL區間,但CS-AgNPs的IC50多小於Ag+。當CS與CS-TPP NPs相比較,在最高劑量下皆未見其細胞毒性,而抗菌性的部分則觀察到CS的抗菌效果優於CS-TPP NPs的現象。
zh_TW
dc.description.abstractThe antibacterial property of silver has been discovered for thousand years. This study used biocompatible chitosan to reduce silver ion and form silver nanoparticles (CS-AgNPs). The antibacterial activity and cell toxicity among Ag+, AgNPs, and CS-AgNPs were compared. Moreover, chitosan (CS) and chitosan nanoparticles (CS-TPP NPs) were also evaluated, too.
The properties of samples were determined by using Zetasizer, TEM, UV-Vis spectroscope, FT-IR , and Flame Atomic Absorption Spectrometer. The cytotoxicity was preformed in L929 cell line and IC50 values were calculated. The antibacterial activity was evaluated in the Escherichia coli as well as Staphylococcus aureus, and the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone were measured.
The size of AgNPs in CS-AgNPs was about 10 nm.The particle diameter of AgNPs and CS-TPP NPs was about 40~50 nm and 200~300 nm. The bacterial activity and cell cytotoxicity of silver products were higher than those of chitosan products. According to the MBC and inhibition zone results, the antibacterial activity of the Ag+ was higher than AgNPs. However, the was no significant difference in 48-hours cell toxicity. In addition, CS-AgNPs had higher antibacterial activity than Ag+ according to MIC and MBC results. The half maximal inhibitory concentrations (IC50) of Ag+ and CS-AgNPs were 0.3-0.5 µg/mL in 48-hours cell experiment, and most of the CS-AgNPs were less than Ag+. There was no cytotoxicity of CS and CS-TPP NPs, even at the highest concentration. The antibacterial activity of CS are higher than CS-TPP NPs.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:12:04Z (GMT). No. of bitstreams: 1
ntu-106-R02423018-1.pdf: 3640400 bytes, checksum: 37b8c74ac0c8cebe11e67ffa3200f752 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
一、銀 1
二、奈米銀(AgNPs) 1
三、AgNPs的毒性機轉 5
四、Ag+的毒性機轉 7
五、AgNPs的性質影響其抗菌性的作用性(Liu and Jiang, 2015) 8
六、Ag與AgNPs的應用 9
七、Ag與AgNPs的危害 12
(一)、估計暴露於含銀物質的量 12
(二)、對人的毒性 13
八、幾丁聚醣(chitosan) 14
九、幾丁聚醣的特性 14
十、幾丁聚醣應用 16
十一、三聚磷酸鈉(Tripolyphosphate, TPP) 18
十二、軟骨素(chondroitin sulfate) 19
第二章 實驗動機與目的 20
第三章 實驗試劑與儀器 21
一、藥品 21
二、細胞實驗材料 22
三、細菌實驗材料 23
四、儀器 23
五、耗材 25
六、藥品溶液與緩衝溶液製備 25
第四章 實驗方法 27
一、幾丁聚醣之製備 30
(一)、去乙醯幾丁聚醣(DACS)之製備 (Kurita, 2001) 30
(二)、去乙醯去聚合幾丁聚醣(DADPCS)之製備 (Mao et al., 2004) 30
(三)、去聚合幾丁聚醣(DPCS)之製備 (Mao et al., 2004) 31
二、幾丁聚醣的物性測定 31
(一)、傅立葉轉換紅外線光譜儀(FT-IR):鑑別官能基 31
(二)、膠體滲透層析(GPC):分子量評估 32
三、製備含奈米銀之幾丁聚醣複合體(CS-AgNPs) (Akmaz et al., 2013 ; Chen et al., 2014) 33
四、含奈米銀之幾丁聚醣複合體(CS-AgNPs)物性測試 33
(一)、粒徑與表面電位分析 33
(二)、紫外光/可見光光譜儀(UV/Visible Spectrophotometer):是否形成奈米銀 33
(三)、傅立葉轉換紅外線光譜儀(FT-IR):鑑別官能基 34
(四)、穿透式電子顯微鏡 (TEM):觀察樣品外觀 34
(五)、火焰式原子吸收光譜儀:分析樣品中的銀含量 34
(六)、安定性試驗 35
五、奈米銀的製備(Rashid et al., 2013) 35
六、奈米幾丁聚醣的製備 (Gan et al., 2005) 36
七、細胞毒性試驗 38
八、細菌實驗 40
(一)、最小抑菌濃度(Minimum Inhibitory Concentration, MIC) (Wiegand et al., 2008) 40
(二)、最小殺菌濃度(Minimum Bactericidal Concentration, MBC) (Mofazzal Jahromi et al., 2013) 42
(三)、紙錠擴散法(Disc-diffusion method):觀察抑制圈(Inhibition zone) (Wang et al., 2015) 42
九、統計分析 42
第五章 實驗結果 43
一、幾丁聚醣之製備 43
(一)、幾丁聚醣之官能基探討 43
(二)、幾丁聚醣之分子量探討 46
二、含奈米銀之奈米複合體 48
(一)、粒徑與電位分析 48
(二)、紫外光/可見光光譜儀(UV/Visible Spectrophotometer)分析 50
(三)、傅立葉轉換紅外線光譜儀(FT-IR) 52
(四)、穿透式電子顯微鏡 (TEM) 54
(五)、火焰式原子吸收光譜儀 56
(六)、安定性試驗 58
三、奈米銀 62
四、奈米幾丁聚醣 65
(一)、粒徑與表面電位分析 65
五、細胞毒性試驗 70
六、抗菌試驗 97
(一)、最小抑菌濃度(MIC) 97
(二)、最小殺菌濃度(MBC) 100
(三)、紙錠擴散法(Disk-diffusion method) 103
第六章 結論 107
第七章 參考文獻 110
dc.language.isozh-TW
dc.subject幾丁聚醣zh_TW
dc.subject銀zh_TW
dc.subject奈米粒子zh_TW
dc.subject抗菌zh_TW
dc.subject毒性zh_TW
dc.subjecttoxicityen
dc.subjectantibacterialen
dc.subjectnanoparticleen
dc.subjectsilveren
dc.subjectchitosanen
dc.title奈米銀與幾丁聚醣的抗菌性研究zh_TW
dc.titleAntibacterial study of silver and chitosan nanoparticlesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃義侑,王健珍
dc.subject.keyword幾丁聚醣,銀,奈米粒子,抗菌,毒性,zh_TW
dc.subject.keywordchitosan,silver,nanoparticle,antibacterial,toxicity,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201700679
dc.rights.note未授權
dc.date.accepted2017-03-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved