請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝松蒼 | |
| dc.contributor.author | Ming-Fong Chang | en |
| dc.contributor.author | 張銘峰 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:12:00Z | - |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-03-10 | |
| dc.identifier.citation | 1 Rotthier, A., Baets, J., Timmerman, V. & Janssens, K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 8, 73-85, doi:10.1038/nrneurol.2011.227 (2012).
2 Hoeijmakers, J. G., Faber, C. G., Lauria, G., Merkies, I. S. & Waxman, S. G. Small-fibre neuropathies--advances in diagnosis, pathophysiology and management. Nat Rev Neurol 8, 369-379, doi:10.1038/nrneurol.2012.97 (2012). 3 Yao, L. et al. Non-viral gene therapy for spinal cord regeneration. Drug Discov Today 17, 998-1005, doi:10.1016/j.drudis.2012.05.009 (2012). 4 Shi, L. et al. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther 10, 1179-1188, doi:10.1038/sj.gt.3301970 (2003). 5 Wiesenhofer, B. & Humpel, C. Lipid-mediated gene transfer into primary neurons using FuGene: comparison to C6 glioma cells and primary glia. Exp Neurol 164, 38-44, doi:10.1006/exnr.2000.7414 (2000). 6 Ohki, E. C., Tilkins, M. L., Ciccarone, V. C. & Price, P. J. Improving the transfection efficiency of post-mitotic neurons. J Neurosci Methods 112, 95-99 (2001). 7 da Cruz, M. T., Simoes, S. & de Lima, M. C. Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp Neurol 187, 65-75, doi:10.1016/j.expneurol.2003.12.013 (2004). 8 Kim, J. B. et al. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Control Release 114, 110-117, doi:10.1016/j.jconrel.2006.05.011 (2006). 9 Tinsley, R. B., Vesey, M. J., Barati, S., Rush, R. A. & Ferguson, I. A. Improved non-viral transfection of glial and adult neural stem cell lines and of primary astrocytes by combining agents with complementary modes of action. J Gene Med 6, 1023-1032, doi:10.1002/jgm.584 (2004). 10 Wolfe, D., Mata, M. & Fink, D. J. Targeted drug delivery to the peripheral nervous system using gene therapy. Neurosci Lett, doi:10.1016/j.neulet.2012.04.047 (2012). 11 Chattopadhyay, M. et al. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy. Gene Ther 12, 1377-1384, doi:10.1038/sj.gt.3302533 (2005). 12 Thakor, D., Spigelman, I., Tabata, Y. & Nishimura, I. Subcutaneous peripheral injection of cationized gelatin/DNA polyplexes as a platform for non-viral gene transfer to sensory neurons. Mol Ther 15, 2124-2131, doi:10.1038/sj.mt.6300256 (2007). 13 Jacques, S. J. et al. AAV8(gfp) preferentially targets large diameter dorsal root ganglion neurones after both intra-dorsal root ganglion and intrathecal injection. Mol Cell Neurosci 49, 464-474, doi:10.1016/j.mcn.2012.03.002 (2012). 14 Zeng, J., Wang, X. & Wang, S. Self-assembled ternary complexes of plasmid DNA, low molecular weight polyethylenimine and targeting peptide for nonviral gene delivery into neurons. Biomaterials 28, 1443-1451, doi:10.1016/j.biomaterials.2006.11.015 (2007). 15 Kawasaki, Y. et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14, 331-336, doi:10.1038/nm1723 (2008). 16 Mason, M. R. et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther 18, 715-724, doi:10.1038/mt.2010.19 (2010). 17 Honda, H., Kawasaki, Y., Baba, H. & Kohno, T. The mu opioid receptor modulates neurotransmission in the rat spinal ventral horn. Anesth Analg 115, 703-712, doi:10.1213/ANE.0b013e318259393d (2012). 18 Xu, Y., Gu, Y., Wu, P., Li, G. W. & Huang, L. Y. Efficiencies of transgene expression in nociceptive neurons through different routes of delivery of adeno-associated viral vectors. Hum Gene Ther 14, 897-906, doi:10.1089/104303403765701187 (2003). 19 Ogawa, N. et al. Gene therapy for neuropathic pain by silencing of TNF-alpha expression with lentiviral vectors targeting the dorsal root ganglion in mice. PLoS One 9, e92073, doi:10.1371/journal.pone.0092073 (2014). 20 Lopes, C., Liu, Z., Xu, Y. & Ma, Q. Tlx3 and Runx1 act in combination to coordinate the development of a cohort of nociceptors, thermoceptors, and pruriceptors. J Neurosci 32, 9706-9715, doi:10.1523/JNEUROSCI.1109-12.2012 (2012). 21 Liu, Y. & Ma, Q. Generation of somatic sensory neuron diversity and implications on sensory coding. Curr Opin Neurobiol 21, 52-60, doi:10.1016/j.conb.2010.09.003 (2011). 22 Lawson, S. N. Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp Physiol 87, 239-244 (2002). 23 Venkatachalam, K. & Montell, C. TRP channels. Annu Rev Biochem 76, 387-417, doi:10.1146/annurev.biochem.75.103004.142819 (2007). 24 Vay, L., Gu, C. & McNaughton, P. A. The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol 165, 787-801, doi:10.1111/j.1476-5381.2011.01601.x (2012). 25 Mak, S., Zhang, X. & McNaughton, P. A. (eLS, 2009). 26 Dhaka, A., Viswanath, V. & Patapoutian, A. Trp ion channels and temperature sensation. Annu Rev Neurosci 29, 135-161, doi:10.1146/annurev.neuro.29.051605.112958 (2006). 27 Hong, S. & Wiley, J. W. Altered expression and function of sodium channels in large DRG neurons and myelinated A-fibers in early diabetic neuropathy in the rat. Biochem Biophys Res Commun 339, 652-660, doi:10.1016/j.bbrc.2005.11.057 (2006). 28 Carriedo, S. G., Yin, H. Z., Lamberta, R. & Weiss, J. H. In vitro kainate injury to large, SMI-32(+) spinal neurons is Ca2+ dependent. Neuroreport 6, 945-948 (1995). 29 Peluffo, H. et al. Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther 20, 645-657, doi:10.1038/gt.2012.78 (2013). 30 Lallemend, F. & Ernfors, P. Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35, 373-381, doi:10.1016/j.tins.2012.03.006 (2012). 31 Hsieh, S. T. et al. Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14, 6392-6401 (1994). 32 Rudolph, C., Lausier, J., Naundorf, S., Muller, R. H. & Rosenecker, J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J Gene Med 2, 269-278, doi:10.1002/1521-2254(200007/08)2:4<269::AID-JGM112>3.0.CO;2-F (2000). 33 Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16, 109-110 (1983). 34 Chiang, H. Y. et al. Reinnervation of muscular targets by nerve regeneration through guidance conduits. J Neuropathol Exp Neurol 64, 576-587 (2005). 35 Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33, 401-406, doi:10.1038/ng1117 (2003). 36 Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-267 (1996). 37 Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 72, 8463-8471 (1998). 38 Blomer, U., Naldini, L., Verma, I. M., Trono, D. & Gage, F. H. Applications of gene therapy to the CNS. Hum Mol Genet 5 Spec No, 1397-1404 (1996). 39 Villetti, G. et al. Antinociceptive activity of the N-methyl-D-aspartate receptor antagonist N-(2-Indanyl)-glycinamide hydrochloride (CHF3381) in experimental models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306, 804-814, doi:10.1124/jpet.103.050039 (2003). 40 Hsieh, Y. L., Chiang, H., Lue, J. H. & Hsieh, S. T. P2X3-mediated peripheral sensitization of neuropathic pain in resiniferatoxin-induced neuropathy. Exp Neurol 235, 316-325, doi:10.1016/j.expneurol.2012.02.013 (2012). 41 Hsieh, Y. L., Chiang, H., Tseng, T. J. & Hsieh, S. T. Enhancement of cutaneous nerve regeneration by 4-methylcatechol in resiniferatoxin-induced neuropathy. J Neuropathol Exp Neurol 67, 93-104, doi:10.1097/nen.0b013e3181630bb8 (2008). 42 Takahashi, Y. & Nakajima, Y. Dermatomes in the rat limbs as determined by antidromic stimulation of sensory C-fibers in spinal nerves. Pain 67, 197-202 (1996). 43 Tschachler, E. et al. Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve end organ accessible to extensive analysis. J Invest Dermatol 122, 177-182, doi:10.1046/j.0022-202X.2003.22102.x (2004). 44 Kim, S. H. & Chung, J. M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355-363 (1992). 45 Chiang, H. Y., Chen, C. T., Chien, H. F. & Hsieh, S. T. Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiol Dis 18, 40-53, doi:10.1016/j.nbd.2004.09.006 (2005). 46 Tsujino, H. et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15, 170-182, doi:10.1006/mcne.1999.0814 (2000). 47 Nascimento, D., Pozza, D. H., Castro-Lopes, J. M. & Neto, F. L. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 19, 210-221, doi:10.1159/000330195 (2011). 48 Hsieh, J. H. et al. Patterns of target tissue reinnervation and trophic factor expression after nerve grafting. Plast Reconstr Surg 131, 989-1000, doi:10.1097/PRS.0b013e3182870445 (2013). 49 Foust, K. D., Poirier, A., Pacak, C. A., Mandel, R. J. & Flotte, T. R. Neonatal intraperitoneal or intravenous injections of recombinant adeno-associated virus type 8 transduce dorsal root ganglia and lower motor neurons. Hum Gene Ther 19, 61-70, doi:10.1089/hum.2007.093 (2008). 50 Stein, C. et al. Peripheral mechanisms of pain and analgesia. Brain Res Rev 60, 90-113, doi:10.1016/j.brainresrev.2008.12.017 (2009). 51 Wang, H. B. et al. Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 107, 13117-13122, doi:10.1073/pnas.1008382107 (2010). 52 Snyder, B. R. et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 22, 1129-1135, doi:10.1089/hum.2011.008 (2011). 53 Lonez, C., Vandenbranden, M. & Ruysschaert, J. M. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 64, 1749-1758, doi:10.1016/j.addr.2012.05.009 (2012). 54 Kabanov, A. V. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 58, 1597-1621, doi:10.1016/j.addr.2006.09.019 (2006). 55 Akhtar, S. Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: a focus on toxicogenomics. Expert Opin Drug Metab Toxicol 6, 1347-1362, doi:10.1517/17425255.2010.518611 (2010). 56 O'Mahony, A. M., Godinho, B. M., Cryan, J. F. & O'Driscoll, C. M. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 102, 3469-3484, doi:10.1002/jps.23672 (2013). 57 Smith, G. M., Falone, A. E. & Frank, E. Sensory axon regeneration: rebuilding functional connections in the spinal cord. Trends Neurosci 35, 156-163, doi:10.1016/j.tins.2011.10.006 (2012). 58 Mason, M. R., Tannemaat, M. R., Malessy, M. J. & Verhaagen, J. Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr Gene Ther 11, 75-89 (2011). 59 Woolf, C. J. Overcoming obstacles to developing new analgesics. Nat Med 16, 1241-1247, doi:10.1038/nm.2230 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20950 | - |
| dc.description.abstract | 對背根神經節進行基因轉殖是可以被應用於治療周邊神經病變的一個有力的治療方式,然而過去的進行方式如背根神經節內注射或脊髓穿刺都存在有許多缺點,包括有容易造成神邊神經損傷或轉殖效益低落等缺點。所以在我們的研究中採用聚乙烯亞胺(PEI)混合可表現綠色螢光(GFP)之DNA植體的方式並透過脊神經注射來達成背根神經節之基因轉殖。在轉殖後一週,我們可發現在脊神經注射組有 82.8% ± 1.70% 的神經細胞試轉殖成功比對背根神經節內注射組別也有(81.3% ± 5.1%, p = 0.82)相較於脊髓穿刺組別有非常高之基因轉殖成功率。此外GFP 在背根神經節內的大神經細胞與小神經細胞的轉殖效益也是相同的。另外在安全性測試中,我們也證實透過脊神經注射不會引起神經損傷、發炎、行為改變等變化。我們的結果證明透過脊神注射聚乙烯亞胺(PEI)混合DNA植體來進行背根神經節的基因轉殖是一個安全且有效的方法。 | zh_TW |
| dc.description.abstract | Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:12:00Z (GMT). No. of bitstreams: 1 ntu-106-D96446002-1.pdf: 5646914 bytes, checksum: 4b483c85e72036c9ff66102990c6bb37 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Introduction…………………………………………………1
Chapter 2. Material and Methods…………………………………3 Axotomy by transection of the sciatic nerve……………………………3 Polymer conjugate synthesis……………………………………………3 Intrathecal injection………………………………………………………4 Lumbar L5 intra-DRG injection…………………………………………4 Spinal nerve injection of PEI/DNA polyplexes……………………4 Spinal nerve crush……………………………………………………………5 Animal behavioral tests………………………………………………………5 Neurophysiological studies…………………………………………………6 Tissue preparation and quantitative multiple-labeling immunofluorescence in DRG neurons…………………………………………………………6 Nerve pathology…………………………………………………………8 Immunohistochemistry in dermal sheets and quantitation of dermal nerve fibers………………………………………………………………………8 Western Blot……………………………………………………………8 Experimental design and statistical analysis……………………9 Chapter 3. Results……………………………………………………………10 Evaluation of delivering gene constructs into DRG: dye injection………10 Demonstration of green fluorescent protein (GFP) expression in the dorsal root ganglia (DRG) after spinal nerve injection……………………………10 Assessment of glial cell activation in the dorsal root ganglia (DRG) after intrathecal, spinal nerve and intra-DRG injection………………………11 Quantitation of gene expression patterns in DRG neurons………………11 Expression patterns of GFP in DRG neurons after spinal nerve injection and intra-DRG injection………………………………………………………12 Safety assessment of gene delivery though spinal nerve injection: multi-modality evaluation………………………………………………12 Expression of activating transcription factor 3 (ATF3) after spinal nerve injection……………………………………………………………………15 Assessment of glial cells and macrophage activation in the spinal nerve after spinal nerve injection……………………………………………………15 Assessment of astrocyte and microglia activation in the spinal cord after spinal nerve injection……………………………………………………15 Integrity of DRG neurons and their processes after spinal nerve injection…16 Chapter 4. Discussion…………………………………………………………18 Technical considerations of spinal nerve injections: comparison with other approaches…………………………………………………………18 Quantifying DRG neurons of different phenotypes…………………19 Safety of delivering gene constructs to the DRG via spinal nerve injection..20 References …………………………………………………………………22 Figures and Figure legends………………………………………………………………………27 Figure 1. Introducing dye into dorsal root ganglia (DRG) neurons via different methods…………………………………………………………………27 Figure 2. Expression of green fluorescent protein (GFP) in the dorsal root ganglia (DRG) via spinal nerve injection……………………………………29 Figure 3. Expression of green fluorescent protein (GFP) and ionized calcium binding adaptor molecule 1 (Iba1) in the dorsal root ganglia (DRG) following different injection approaches……………………………………………….31 Figure 4. Quantitation of dorsal root ganglia neurons……………………….33 Figure 5. Expression of green fluorescent protein (GFP) in the dorsal root ganglia (DRG) after gene constructs were delivered via spinal nerve injection and intra-DRG injection…………………………………………………….35 Figure 6. Change in hindlimb posture, behavioral tests, and nerve conduction studies after spinal nerve injection……………………………………….…37 Figure 7. Expression pattern of phosphorylated neurofilament and macrophage as injury markers in dorsal root ganglia (DRG) after spinal nerve injection……………………………………………………………………40 Figure 8. Patterns of neurofilament expression and macrophage infiltration as injury markers in the dorsal root ganglia (DRG) after spinal nerve injection……………………………………………………………………42 Figure 9. Expression of activating transcription factor 3 (ATF3) and green fluorescent protein (GFP) in the dorsal root ganglia (DRG) and spinal cord after spinal nerve injection (injection group) in comparison with sciatic nerve transection (axotomy group), spinal nerve crush (crush group), and intra-DRG injection (intra-DRG injection group)……………………………………44 Figure 10. Expression of ionized calcium binding adaptor molecule 1 (Iba1) and green fluorescent protein (GFP) in the spinal nerve after spinal nerve injection (injection group) compared to sciatic nerve transection (axotomy group) ), spinal nerve crush (crush group) and intra-DRG injection (intra-DRG injection group)……………………………………………………………………46 Figure 11. Expression of glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in the spinal cord after spinal nerve injection (spinal nerve injection group) in comparison with sciatic nerve transection (axotomy group), spinal nerve crush (crush group), and intra-DRG injection (intra-DRG injection)…………………………………………48 Figure 12. Pathology of the sciatic nerve and nerve terminals in the skin after spinal nerve injection…………………………………………………………50 Table 1. Table of all antibodies………………………………………………………52 | |
| dc.language.iso | en | |
| dc.subject | 基因轉殖 | zh_TW |
| dc.subject | 背根神經節 | zh_TW |
| dc.subject | transfection | en |
| dc.subject | Dorsal root ganglion | en |
| dc.title | 透過脊神經注射達成非病毒載體之大鼠背根神經節基因轉殖 | zh_TW |
| dc.title | Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳君泰,潘俊良,曾拓榮,江皓郁,呂俊宏 | |
| dc.subject.keyword | 背根神經節,基因轉殖, | zh_TW |
| dc.subject.keyword | Dorsal root ganglion,transfection, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201700684 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-03-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
