Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20944
標題: 以腦波訊號分類音樂節拍
Musical Meter Classification Using EEG Signals
作者: Chung-Hsien Tsai
蔡宗憲
指導教授: 陳宏銘(Homer H. Chen)
關鍵字: 音樂節拍分類,腦電圖信號分析,神經導引效應,音樂資料檢索,
Musical meter classification,EEG signal analysis,neural entrainment,music information retrieval,
出版年 : 2017
學位: 碩士
摘要: 利用神經生理反應來進行音樂資訊檢索是近年來的新趨勢,其可行性來自於人類在聆聽音樂的過程中,音樂會被大腦編碼。在這篇論文當中,我們將嘗試使用腦電圖(EEG)來進行音樂節拍(musical meter)分類。過去的實驗顯示腦波頻率會受節拍頻率(beat frequency)與音樂節拍的影響,出現神經導引效應(neural entrainment),並產生節拍頻率與其次諧波(subharmonic)的振盪,而音樂節拍可由節拍頻率與次諧波的倍數關係求得。然而在一般的音樂作為刺激時,由於音樂的節奏較複雜而產生了上述頻率以外的振盪,加上腦波訊號受到許多外在雜訊干擾,本身訊噪比(signal-to-noise ratio)較低,以致於難以從音樂聆聽者的腦波取得節拍資訊。
為了克服上述困難,我們首先用一些去除雜訊的技巧來提高訊號的訊噪比。其中包含了獨立訊號分析(independent component analysis)、空間濾波器(spatial filtering)與訊號平均法(averaging technique)。接著我們偵測腦波強度頻譜的峰值,並經由音樂學的背景知識與分析峰值頻率的倍數關係來找出可能的節拍頻率,最後再藉由分析節拍頻率之次諧波的強度來協助我們找到音樂的節拍。
我們使用了九名音樂聆聽者的腦波來評估我們的演算法,這些音樂聆聽者均聆聽了十二首包含兩種節拍的音樂片段,每首重複聽五次,並同時量測腦波。我們將這些腦波作為演算法的輸入並計算分類準確度(accuracy)。這個分類問題的準確度可達到83.33%,結果顯示,我們的方法可以有效對音樂聆聽者的腦波作節拍分類。
Solving music information retrieval (MIR) problem by analyzing neural response is feasible since music is encoded by the brain. In this thesis, the musical meters are classified using the EEG signals recorded from music listeners. Previous studies show that simple rhythmic stimuli can induce EEG signals to resonate at the beat frequency (F0) of the stimulus and the subharmonics of F0, which is called entrainment response. The musical meter can be determined by the frequency ratio of F0 and its subharmonics. However, a music stimulus can induce more complicated EEG spectra than a simple rhythmic stimulus does. Besides, EEG signals have a low signal-to-noise ratio (SNR). These reasons make it difficult to classify musical meter using the EEG signals recorded from music listeners.
To overcome the above difficulties, we first improve the SNR of EEG signals by using several denoising techniques involving independent component analysis (ICA), trial averaging technique, and spatial filtering. Then, we detect the peaks of an EEG magnitude spectrum and analyze ratio of peaks’ frequencies to select possible F0. Finally, we analyze the magnitude of F0’s subharmonics to help us determine the musical meter. In our evaluation, the test EEG signals are recorded from the participants listening to music stimuli in two kinds of meter types, and these EEG signals are used as the input of the proposed algorithm. The accuracy of the musical meter classification reached 83.33%. Our result shows that we succeed to solve MIR problem with neural response.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20944
DOI: 10.6342/NTU201700702
全文授權: 未授權
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
626.11 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved