Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘(Yaow-Ming Chen)
dc.contributor.authorFeng-Yu Wuen
dc.contributor.author吳峰羽zh_TW
dc.date.accessioned2021-06-08T03:10:02Z-
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-05-30
dc.identifier.citation[1] 80 PLUS® certified power supplies and manufacturers. [Online]. Available: http://www.80plus.org/index.htm
[2] Y. Ren, M. Xu, J. Sun and F. C. Lee, “A family of high power density unregulated bus converters,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1045–1054, Sep. 2005.
[3] Y. Dong, J. Sun, M. Xu, F. C. Lee and M. M. Jovanovic, “The light load issue of coupled inductor laptop voltage regulators and its solutions,” in Proc. IEEE APEC, 2007, pp. 1581–1587.
[4] J. A. A. Qahoug, O. Abdel-Rahman, L. Huang and I. Batarseh, “On load adaptive control of voltage regulators for power managed loads: control schemes to improve converter efficiency and performance,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1806–1819, Sep. 2007.
[5] Y. Panov and M. Javanovic, “Design considerations for 12 V/1.5 V, 50 A voltage regulator modules,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 776–783, Nov. 2001.
[6] J. W. Kim, D. Y. Kim, C.-E. Kim and G. W. Moon, “A simple switching control technique for improving light load efficiency in phase-shifted full-bridge converter with server power system,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1562–1566, April, 2014.
[7] B. Y. Chen and Y. S. Lai, “Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001–1012, April, 2010.
[8] Z. Hu, Y. Liu, and P. C. Sen, “Bang-bang charge control for LLC resonant converters,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 1093-1108, Feb. 2015.
[9] W. Feng, F. C. Lee and P. Mattavelli, “Simplified Optimal Trajectory Control (SOTC) for LLC resonant converters,” IEEE Trans. Power Electron., vol. 28, no. 5, pp.2415–2426, May, 2013.
[10] P. L. Wong, P. Xu, B. Yang and F. C. Lee, “Performance improvements of interleaving VRMs with coupling inductors,” IEEE Trans. Power Electron., vol. 16, no. 4, pp. 499–507, Jul. 2001.
[11] W. Huang and B. Lehman, “Analysis and verification of inductor coupling effect in interleaved multiphase dc–dc converters,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5004–5017, July. 2016.
[12] R. Redl and J. Sun, “Ripple-based control of switching regulators—An overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[13] Y. C. Lin , C. J. Chen , D. Chen and B. Wang, “A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4301–4310, Oct. 2012.
[14] J. T. Su and C. W. Liu, “A novel phase-shedding control scheme for improved light load efficiency of multiphase interleaved DC–DC converters,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4742–4752, Oct. 2013.
[15] M. Rodriguez, Y. Zhang and D. Maksimovic, “High-frequency PWM buck converters using GaN-on-SiC HEMTs,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2462–2473, May 2014.
[16] Y. Jang and M. M. Jovanovic, 'Light-load efficiency optimization method,' IEEE Trans. Power Electron., vol. 25, no. 1, pp.67–74, 2010.
[17] S. Oliver, 2006, “Enabling next generation high density power conversion”, Presented at IBM power and cooling technology symposium. [Online] Available: http://www.vicorpower.com/documents/whitepapers/fpa_ibm_white_paper.pdf.
[18] S. Brian, P. Parviz and C. Yang, “Minimum pulse width for pulse width modulation control,” US Pat. 7777587 B2, Aug. 17, 2010.
[19] J. Fan and T. Harrison, “Substrate switching noise analysis and layout/circuit considerations in monolithic power converters”, in Proc. IEEE ECCE, 2012, pp. 2610–2615.
[20] A. V. Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM conveners,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 301–308, Jan. 2003.
[21] K. Cheng, F. C. Lee and P. Mattavelli, “Adaptive ripple-based constant on-time control with internal ramp compensations for Buck converters,” in Proc. IEEE APEC, 2014, pp. 440–446.
[22] F. Lin and D. Y. Chen, “Reduction of power supply EMI emission by switching frequency modulation,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 132–137, Jan. 1994.
[23] M. L. Yeh, W. R. Liou, H.-P. Hsieh and Y. J. Lin, “An electromagnetic interference (EMI) reduced high-efficiency switching power amplifier,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 710–718, Mar. 2010.
[24] Y. S. Lai and B. Y. Chen, “New random PWM technique for a full-bridge DC/DC converter with harmonics intensity reduction and considering efficiency,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5013–5013, Nov. 2013.
[25] S. Kapat, “Configurable multimode digital control for light load DC–DC converters with improved spectrum and smooth transition,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2680–2688, Mar. 2016.
[26] M. Ferdowsi and A. Emadi, 'Pulse regulation control technique for integrated high-quality rectifier-regulators', IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 116–124, Feb. 2005.
[27] Y. Ren, M. Xu , J. Zhou and F. C. Lee, 'Analytical loss model of power MOSFET', IEEE Trans. Power Electron., vol. 21, no. 2, pp.310 -319, 2006.
[28] Y. Xiong, S. Sun, H. Jia, P. Shea and Z. Shen, “New physical insights on power MOSFET switching losses,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 525–531, Feb. 2009.
[29] W. Eberle , Z. Zhang , Y. F. Liu and P. C. Sen, 'A practical switching loss model for buck voltage regulators', IEEE Trans. Power Electron., vol. 24, no. 3, pp.700 –713, 2009.
[30] S. Maniktala, Troubleshooting Switching Power Converters, 1st ed. Newnes, 2007, pp. 197–205.
[31] F. Y. Wu, Y. M. Chen and C. W. Chen, “Impact of PWM jitter to switching-mode power converter efficiency,” in Proc. IEEE EPE, 2013, pp. 1–8.
[32] R. W. Erickson and D. Maksimovic, Fundamental of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001, Chapter 7.
[33] Y. Qiu, M. Xu, K. Yao, J. Sun and F. C. Lee, “Multifrequency small-signal model for buck and multiphase buck converters,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1185–1192, Sept. 2006.
[34] S.-F. Hsiao, D. Chen, C. J. Chen and H.-S. Nien, “A New multiple-frequency small-signal model for high-bandwidth computer V-Core regulator applications,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 733–742, Jan. 2016.
[35] R. D. Middlebrook, “Describing function properties of a magnetic pulse-width modulator,” in Proc. IEEE PESC, 1972, pp. 386–398.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20914-
dc.description.abstract一些原因使得切換式電源轉換器導致脈寬調變抖動,如降低電磁干擾和高頻寬的設計方案。本論文主旨為提出兩種效率模型適用於分析脈寬調變抖動對切換式電力轉換器之影響: 平均效率模型與多頻率效率模型。本文首先藉由電路模型推導,將傳統小訊號模型中所忽略的兩個擾動訊號源之乘積納入考量,進而推衍出一個新的平均效率模型。然而由於脈波寬度比較器之增益為非線性,本文進一步藉由多頻率小訊號模型為基礎,推衍並補足既有的多頻率小訊號模型,發展出一個新穎之多頻率效率模型。本文所提出之多頻率效率模型可以涵蓋平均效率模型外,並具有可適用於高頻訊號、任意週期性波形訊號分析之特點。本文最終也提出脈寬調變抖動對切換式電力轉換器效率下降的建議方案。此外本文也藉由數學推導與圖示,來說明一般電力電子轉換器於量測穩定度時,其波德圖曲線在開關切換頻率之整倍頻的突波現象。最後,以電腦模擬與測試機台來驗證與所提出的效率模型相符。zh_TW
dc.description.abstractThere are several reasons to cause the PWM jitter in power converter such as EMI reduction, and the side effect of high bandwidth design. The primary objective of this dissertation is to propose two efficiency models for evaluating the impact of the PWM jitter on the efficiency of switching-mode power converter: average efficiency model and the multi-frequency efficiency model. By taking the product of two perturbation terms into consideration, which is ignored in the conventional average small-signal model, the average efficiency model is proposed first. Due to the nonlinear characteristic of the PWM comparator, the multi-frequency efficiency model is also developed by considering the sideband frequency. The proposed multi-frequency efficiency model not only covers the average efficiency model but also apply for high frequency signal and arbitrary periodic wave. Eventually, the methods to reduce the efficiency impact caused by the jitter are suggested. In addition, the reason of control-to-output gain’s magnitude spike on the Bode plot can be explained by the derived equations. In spite of various perturbation frequencies, amplitudes, and waveforms, the mathematical calculation, the computer simulation, and the hardware measurement of the efficiency impact are consistent which validate the accuracy of the proposed multi-frequency efficiency model.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:10:02Z (GMT). No. of bitstreams: 1
ntu-106-D98921015-1.pdf: 7195313 bytes, checksum: e6cf07a24d34307313d76867fdc23b39 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Contributions 4
1.3 Dissertation Outline 5
Chapter 2 Literature Survey 6
2.1 PWM Jitter Applications 6
2.2 Efficiency Improvement Methods 10
2.3 Efficiency Model 12
Chapter 3 Average Efficiency Model 15
3.1 PWM Behavior 15
3.2 Derivation of the Equivalent Circuit Averaging Model 19
3.2.1 Derivation of the Circuit Averaging Model 25
3.3 The Proposed Average Efficiency Model 28
3.4 Summary 34
Chapter 4 Multi-frequency Efficiency Model 35
4.1 Nonlinearity of PWM Comparator Characteristic 35
4.1.1 Disappearance Sideband Components from Simulation and Measurement 37
4.2 Derivation of the PWM Modulation Gains 39
4.2.1 PWM Modulation Gain: Fm 40
4.2.2 PWM Modulation Gain: Fm+ 46
4.2.3 PWM Modulation Gain: Fm- 50
4.3 The Proposed Multi-Frequency Efficiency Model 54
4.3.1 Two Kinds of Special Frequency Points: nfs and 2nfs 56
4.4 Summary 66
Chapter 5 Computer Simulation and Experiment Verifications 67
5.1 Computer Simulation 67
5.2 Experiment Setup and Results 74
5.3 Summary 85
Chapter 6 Conclusions and Suggested Future Works 86
6.1 Conclusions 86
6.2 Suggested Future Works 87
Appendix A AC Components of the Input Power and Output Power Derivations for Square Wave Pertubation Signal. 88
Appendix B AC Components of the Input power and Output Power Derivations for Triangle Wave Pertubation Signal. 92
References 96
Vita 101
dc.language.isoen
dc.subject多頻率效率模型zh_TW
dc.subject脈寬調變zh_TW
dc.subject抖動zh_TW
dc.subject平均狀態小訊號模型zh_TW
dc.subject多頻率小訊號模型zh_TW
dc.subject平均效率模型zh_TW
dc.subjectMulti-frequency efficiency modelen
dc.subjectPulse-Width-Modulation (PWM)en
dc.subjectJitteren
dc.subjectAverage small-signal modelen
dc.subjectMulti-frequency small-signal modelen
dc.subjectAverage efficiency modelen
dc.title脈寬調變抖動對切換式電源轉換器之效率影響zh_TW
dc.titleImpact of PWM Jitter on the Efficiency of Switching-Mode Power Convertersen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳德玉(Dan Chen),潘晴財(Ching-Tsai Pan),賴炎生(Yen-Shin Lai),邱煌仁(Huang-Jen Chiu)
dc.subject.keyword脈寬調變,抖動,平均狀態小訊號模型,多頻率小訊號模型,平均效率模型,多頻率效率模型,zh_TW
dc.subject.keywordPulse-Width-Modulation (PWM),Jitter,Average small-signal model,Multi-frequency small-signal model,Average efficiency model,Multi-frequency efficiency model,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201700843
dc.rights.note未授權
dc.date.accepted2017-05-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved