Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳怡然
dc.contributor.authorKuang-Hao Kungen
dc.contributor.author龔光豪zh_TW
dc.date.accessioned2021-06-08T03:09:37Z-
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-06-02
dc.identifier.citation[1] J. N. Kitchen, C. Chu, S. Kiaei and B. Bakkaloglu,“Combined Linear and Δ-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 404–413, Feb. 2009.
[2] M. Hassan, L. E. Larson, V. W. Leung, and P. M. Asbeck, “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1185–1198, May 2012.
[3] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park and B. Kim, “Envelope-Tracking Two-Stage Power Amplifier with Dual-Mode Supply Modulator for LTE Applications,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 543–552, Jan. 2013.
[4] D. Kang, D. Kim, J. Choi, J. Kim, Y. Cho and B. Kim, “A Multimode/Multiband Power Amplifier with a Boosted Supply Modulator,' IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2598–2608, Oct 2010.
[5] J. Choi, D. Kim, D. Kang, and B. Kim, “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Trans. Microw. Theory Tech.., vol. 59, no. 7, pp. 1796–1802, Jul. 2011.
[6] D. Kim, D. Kang, J. Choi, J. Kim, Y. Cho, and B. Kim, “Optimization for Envelope Shaped Operation of Envelope Tracking Power Amplifier,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1787–1795, Jul. 2011.
[7] P. Y. Wu and P. K. T. Mok, “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifier With 9% Efficiency Improvement,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2543–2556, Dec. 2010.
[8] J. Sankman, M. K. Song, and D. Ma, “Switching-Converter-Only Multiphase Envelope Modulator with Slew Rate Enhancer for LTE Power Amplifier Applications,” IEEE Transactions on Power Electronics, vol. 31, no. 01, January 2016.
[9] D. Kim, D. Kang, J. Kim, Y. Cho, and B. Kim, “Highly Efficient Dual-Switch Hybrid Switching Supply Modulator for Envelope Tracking Power Amplifier,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 6, pp. 285-287, 2012.
[10] M. Hassan, P. M. Asbeck, and L. E. Larson, “A CMOS Dual-Switching Power-Supply Modulator With 8% Efficiency Improvement for 20MHz LTE Envelope Tracking RF Power Amplifiers, ” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 366-367, Feb. 2013.
[11] C. Hsia, A. Zhu, J. Yan, P. Draxler, D. Kimball, S. Lanfranco, and P. Asbeck, “Digitally Assisted Dual-Switch High-Efficiency Envelope Amplifier for Envelope-Tracking Base-Station Power Amplifiers,” IEEE Trans. Micro. Theory Tech., vol. 59, no. 11, pp. 2943–2952, Nov. 2011.
[12] V. Pinon, F. Hasbani, A. Giry , D. Pache and C. Garnier, 'A Single-Chip WCDMA Envelope Reconstruction LDMOS PA with 130MHz Switched-Mode Power Supply,' in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 564-565, Feb. 2008.
[13] T. W. Kwak, M.-C. Lee, and G. H. Cho, “A 2W CMOS hybrid switching amplitude modulator for EDGE polar transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2666–2676, Dec. 2007.
[14] R. Wu, Y.T. Liu, J. Lopez, C. Schecht, Y. Li, and D. Y. C. Lie, “High-Efficiency Silicon-Based Envelope-Tracking Power Amplifier Design With Envelope Shaping for Broadband Wireless Applications,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2030–2040, Sep. 2013.
[15] S. H. Yang, C. L. Wey, K. H. Chen, Y. H. Lin, J. J. Chen, T. Y. Tsai and C. C. Lee, 'A 20MS/s Buck/Boost Supply Modulator for Envelope Tracking Applications with Direct Digital Interface,' in IEEE Asian Solid-State Circuits Conf. pp. 73-76, Nov. 2014
[16] P. Arnò1, M. Thomas, V. Molata, T. Jeřábek, “Envelope Modulator for Multimode Transmitters with AC-Coupled Multilevel Regulators,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2014.
[17] J. L. Woo, S. Park, U. Kim and Y. Kwon, “Dynamic Stack-Controlled CMOS RF Power Amplifier for Wideband Envelope Tracking,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, pp. 3452–3464, Dec. 2014.
[18] S. Park, J. L. Woo, U. Kim and Y. Kwon, “Broadband CMOS Stacked RF Power Amplifier Using Reconfigurable Interstage Network for Wideband Envelope Tracking,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, pp. 1174–1185, Apr. 2015.
[19] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park, K. Moon, S. Koo and B. Kim, “Highly Efficient RF Transmitter Over Broad Average Power Range Using Multilevel Envelope-Tracking Power Amplifier,” IEEE Trans. Circuits Systems I, Reg. Papers, vol. 62, no. 6, pp. 1648–1657, Jun. 2015.
[20] M. Hassan, L.E. Larson, V.W. Leung, and P.M. Asbeck, “A Wideband CMOS/GaAs HBT Envelope Tracking Power Amplifier for 4G LTE Mobile Terminal Applications,” IEEE Trans. Microwave Theory and Techniques, vol. 60, no. 5, pp.1321-1330, May 2012.
[21] M. Tan, W. H. Ki “An Efficiency-Enhanced Hybrid Supply Modulator With Single-Capacitor Current-Integration Control,” IEEE J. Solid-State Circuits, vol. 51, no. 2, February 2016
[22] S. H. Yang, Y. T. Lin, Y. S. Ma, H. W. Chen, K. H. Chen, C. L. Wey, Y. H. Lin, S. R. Lin, T. Y. Tsai “A Single-Inductor Dual-Output Converter with Linear Amplifier-Driven Cross Regulation for Prioritized Energy-Distribution Control of Envelope-Tracking Supply Modulator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2017.
[23] K. Onizuka, S. Saigusa, S. Otaka, “A 1.8GHz Linear CMOS Power Amplifier with Supply-Path Switching Scheme for WCDMA/LTE Applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013.
[24] K. Oishi, E. Yoshida, Y. Sakai, Y. Kawano, N. Shirai, H. Kano, M, Kudo, T. Murakami, T. Tamura, S.Kawai, S. Yamaura, K. Suto, H. Yamazaki, T. Mori “A 1.95GHz Fully Integrated Envelope Elimination and Restoration CMOS Power Amplifier with Envelope/Phase Generator and Timing Aligner for WCDMA and LTE,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2014
[25] X. Liu, H. Zhang, M. Zhao, X. Chen, P. K. T. Mok, H. C. Luong. “A 2.4V 23.9dBm 35.7%-PAE- 32.1dBc-ACLR LTE-20MHz Envelope-Shaping-and-Tracking System with a Multiloop-Controlled AC-Coupling Supply Modulator and a Mode-Switching PA,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2017.
[26] B. Razavi, “Design of analog CMOS integrated circuits,” McGraw-Hill Inc., 2001.
[27] C. I Chiu, “On the Implementation of an Ultra-Wide-Load High-Efficient DC-DC Buck Converter,” M.S. thesis, National Central University, Taiwan, Jun. 2011.
[28] P. J. Liu, W. S. Ye, J. N. Tai, H. S. Chen, J. H. Chen, Y. J. Chen,“A High-Efficiency CMOS DC-DC Converter With 9-μs Transient Recovery Time,”IEEE Trans. Circuits Systems I, Reg. Papers, vol. 59, no. 3, pp.575–583, Mar. 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20906-
dc.description.abstract隨著可攜式電子產品蓬勃的發展,例如可攜式電話、行動電視、數位相機和個人數位助理…等,這些可攜式裝置皆是以電池為供電來源,而電池的使用時間是使用者相當在意的特性,因此,如何有效使用和分配電池有限能量是電源管理系統重要的課題。無線通訊系統上逐漸增長的能耗問題,主要原因來自於行動通訊裝置的高數據速率以及大頻寬。無線通訊系統中,例如:寬頻分碼多工(WCDMA)和長期演進技術(LTE),射頻功率放大器在通訊系統中為主要的耗能來源之一,而為了降低功率放大器的能源損耗,最廣為人知的方法是利用電源供應調變器追蹤射頻訊號封包並且提供相對應的供應電壓給予功率放大器做使用,因此將使得整體功率放大器的效率提升。這個方法名為封包追蹤技術。
本論文提出的電源供應調變器電路主要包含兩個部分,第一部分是使用兩個切換式轉換器用來提供低頻訊號功率,此電路可提升轉換器的輸出電流,並且降低對於線性放大器的電流需求。第二部分則是使用線性放大器用來提供高頻訊號功率,此電路可提供高頻寬以及降低輸出雜訊。
本論文使用0.35微米互補式金屬氧化物半導體製程實現,晶片面積為1.51×1.05 mm2。追蹤的訊號為1/5/10/20 MHz之弦波及20 MHz LTE之封包訊號,可操作的輸出電壓範圍為0.4 ~3.9 V,可達到的效率為82.3 %。
zh_TW
dc.description.abstractWith the growing development for portable devices, such as cellular phones, mobile TV, camera recorder and PDAs, these portable devices use battery as the power source and customers are concerned about the battery life. As a result, how to use the battery energy efficiently is the most concerned problem. There has been an increasing power consumption concern for wireless communication. One of the major reasons is the demand for higher data rates and wider bandwidth in portable devices. The power amplifier (PA) is a main part, which accounts for a major portion of the power consumption in wireless communication systems, (e.g., wideband code-division multiple access (WCDMA), and long-term evolution (LTE)). To reduce power dissipation in these power amplifiers, one promising solution is to employ a supply modulator (SM) that tracks the envelope of the RF input and modulates the PA supply voltage accordingly. Therefore, it can improve the whole efficiency of PA. This technique is known as envelope-tracking (ET) technique.
In this thesis, the supply modulator includes two parts. First part is the dual-switching converter, which provides low frequency content of the envelope waveform, increases the output current of the switching converter, and decreases the current demand from the linear amplifier. The additional linear amplifier provides high frequency content of the envelope waveform, which has high bandwidth and low output noise.
The chip is fabricated in a 0.35 μm CMOS process, and its size is 1.51×1.05 mm2. The test signals are 1/5/10/20 MHz sine waves and 20 MHz LTE envelope. The output voltage range and the peak efficiency are 0.4 ~3.9 V and 82.3 %, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:09:37Z (GMT). No. of bitstreams: 1
ntu-106-R03942143-1.pdf: 3595879 bytes, checksum: 48c139328bdebef1da868707d6a81748 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
目錄 IV
圖目錄 VI
表格目錄 I
Chapter 1 概論 1
1.1 研究背景與動機 1
1.2 論文架構 5
Chapter 2 封包追蹤技術之電源供應調變器簡介 6
2.1.1 線性放大器(Linear Amplifier) 6
2.1.2 切換式轉換器(Switching Converter) 8
2.1.3 架構比較 10
2.1.4 串聯式混合型切換放大器(Series hybrid switching amplifier) 10
2.1.5 並聯式混合型切換放大器(Parallel hybrid switching amplifier) 12
2.2 文獻回顧 13
Chapter 3 封包追蹤技術之電源供應調變器設計 26
3.1 規格簡介 28
3.2 電源供應調變器電路架構 30
3.3 電流回授迴路分析 32
Chapter 4 電路設計與模擬 36
4.1 製程介紹 36
4.2 線性放大器(Linear amplifier) 37
4.3 運算放大器(Operational Amplifier) 45
4.4 能隙參考電路(Bandgap Reference) 47
4.5 遲滯比較器(Hysteresis Comparator) 51
4.6 斜坡產生電路(Ramp Generator) 54
4.7 非重疊時序產生器(Non-overlapping Clock Generator) 57
4.8 閘極驅動器(Gate Driver) 59
4.9 電路模擬結果 59
Chapter 5 佈局及量測結果 63
5.1 晶片佈局 63
5.2 印刷電路板設計 64
5.3 量測環境設定 67
5.4 量測結果與討論 71
5.4.1 量測結果 71
5.4.2 量測結果討論 91
Chapter 6 結論 94
6.1 結論 94
6.2 未來展望 95
參考文獻 96
dc.language.isozh-TW
dc.subject線性放大器zh_TW
dc.subject封包追蹤技術zh_TW
dc.subject電源供應調變器zh_TW
dc.subject功率放大器zh_TW
dc.subject切換式轉換器zh_TW
dc.subjectSupply modulatoren
dc.subjectLinear amplifieren
dc.subjectSwitching converteren
dc.subjectPower amplifieren
dc.subjectEnvelope trackingen
dc.title20 MHz LTE封包追蹤技術之CMOS電源供應調變器zh_TW
dc.titleCMOS Power-Supply Modulator for 20 MHz LTE Envelope Tracking Techniqueen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳景然,陳建中,劉邦榮
dc.subject.keyword封包追蹤技術,電源供應調變器,功率放大器,切換式轉換器,線性放大器,zh_TW
dc.subject.keywordEnvelope tracking,Supply modulator,Power amplifier,Switching converter,Linear amplifier,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201700868
dc.rights.note未授權
dc.date.accepted2017-06-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved