Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20852
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 駱尚廉 | |
dc.contributor.author | Yi-Jing Chen | en |
dc.contributor.author | 陳奕靜 | zh_TW |
dc.date.accessioned | 2021-06-08T03:06:52Z | - |
dc.date.copyright | 2017-07-07 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-06-29 | |
dc.identifier.citation | 歐陽嶠暉(2011),下水道工程學,長松文化興業股份有限公司,台北。
劉艳、梁沛、郭麗(2005),負載型奈米二氧化對重金屬離子吸附性能的研究,化學學報,Vol. 63,No. 4,312-316。 張天永、李祥忠、趙進才(1999),二氧化鈦在光催化降解染料廢水中的應用,催化學報,Vol. 20,No. 3,356-358。 Badis, A., Ferradji, F., Boucherit, A., Fodil, D., & Boutoumi, H. (2010). Removal of natural humic acids by decolorizing actinomycetes isolated from different soils (Algeria) for application in water purification. Desalination, 259(1), 216-222. Baur, W. (1961). Atomabstaende und bindungswinkel im brookit, TiO2. Acta Crystallographica, 14(3), 214-216. Behnajady, M. A., Alizade, B., & Modirshahla, N. (2011). Synthesis of Mg‐Doped TiO2 Nanoparticles under Different Conditions and its Photocatalytic Activity. Photochemistry and Photobiology, 87(6), 1308-1314. Bekbölet, M., & Balcioglu, I. (1996). Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: the influence of hydrogen peroxide and bicarbonate ion. Water Science and Technology, 34(9), 73-80. Bell-Ajy, K., Abbaszadegan, M., Ibrahim, E., Verges, D., & LeChevallier, M. (2000). Conventional and optimized coagulation for NOM removal. American Water Works Association. Journal, 92(10), 44. Calace, N., Liberatori, A., Petronio, B., & Pietroletti, M. (2001). Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environmental pollution, 113(3), 331-339. Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33-177. Chakraborty, S., De, S., DasGupta, S., & Basu, J. K. (2005). Adsorption study for the removal of a basic dye: experimental and modeling. Chemosphere, 58(8), 1079-1086. Cheng, W. P., & Chi, F. H. (2002). A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method. Water Research, 36(18), 4583-4591. Cherian, S., & Wamser, C. C. (2000). Adsorption and photoactivity of tetra (4-carboxyphenyl) porphyrin (TCPP) on nanoparticulate TiO2. The Journal of Physical Chemistry B, 104(15), 3624-3629. Cromer, D. T., & Herrington, K. (1955). The structures of anatase and rutile. Journal of the American Chemical Society, 77(18), 4708-4709. Daghrir, R., Drogui, P., & Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 52(10), 3581-3599. Diebold, U. (2003). The surface science of titanium dioxide. Surface science reports, 48(5), 53-229. Frimmel, F. H., Abbt-Braun, G., Heumann, K. G., Hock, B., Lüdemann, H.-D., & Spiteller, M. (2008). Refractory organic substances in the environment: John Wiley & Sons. Ghezzar, M., Abdelmalek, F., Belhadj, M., Benderdouche, N., & Addou, A. (2007). Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2. Applied Catalysis B: Environmental, 72(3), 304-313. Giasuddin, A. B., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022-2027. Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657. Hadj Salah, N., Bouhelassaa, M., Bekkouche, S., & Boultii, A. (2004). Study of photocatalytic degradation of phenol. Desalination, 166, 347-354. Hameed, B., Ahmad, A., & Aziz, N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering Journal, 133(1), 195-203. Han, C., Likodimos, V., Khan, J. A., Nadagouda, M. N., Andersen, J., Falaras, P., Rosales-Lombardi, P., & Dionysiou, D. D. (2014). UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environmental Science and Pollution Research, 21(20), 11781-11793. Hu, C., Liu, H., Qu, J., Wang, D., & Ru, J. (2006). Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control. Environmental science & technology, 40(1), 325-331. Jones, M. N., & Bryan, N. D. (1998). Colloidal properties of humic substances. Advances in Colloid and Interface Science, 78(1), 1-48. Kaeding, U., Drikas, M., Dellaverde, P., Martin, D., & Smith, M. (1992). A direct comparison between aluminium sulphate and polyaluminium chloride as coagulants in a water treatment plant. Water Supply, 10(4), 119-132. Khanna, A., & Shetty, V. (2013). Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@ TiO2 core–shell structured nanoparticles. Environmental Science and Pollution Research, 20(8), 5692-5707. Khataee, A., Zarei, M., Fathinia, M., & Jafari, M. K. (2011). Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: destruction pathway and response surface approach. Desalination, 268(1), 126-133. Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A, 115(46), 13211-13241. Kusakabe, K., Aso, S., Hayashi, J.-I., Isomura, K., & Morooka, S. (1990). Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with u.v. irradiation. Water Research, 24(6), 781-785. Lan, Y., Lu, Y., & Ren, Z. (2013). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2(5), 1031-1045. Leong, K. H., Monash, P., Ibrahim, S., & Saravanan, P. (2014). Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Solar Energy, 101, 321-332. Liao, S. C., Mayo, W. E., & Pae, K. D. (1997). Theory of high pressure/low temperature sintering of bulk nanocrystalline TiO2. Acta Materialia, 45(10), 4027-4040. Lokshin, E., & Belikov, M. (2003). Water purification with titanium compounds to remove fluoride ions. Russian Journal of Applied Chemistry, 76(9), 1466-1471. Mahmoodi, N. M., Hayati, B., Arami, M., & Bahrami, H. (2011). Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination, 275(1), 93-101. Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83(11), 1431-1442. Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in Colloid and Interface Science, 159(2), 189-197. Mo, S.-D., & Ching, W. (1995). Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B, 51(19), 13023. Na, S.-H., Shon, H. K., Kim, J. B., Park, H. J., & Kim, J.-H. (2011). Preparation and characterization of titania nanoparticle produced from Ti-flocculated sludge with paper mill wastewater. Journal of Industrial and Engineering Chemistry, 17(2), 277-281. O’Melia, C. R. (1978). Coagulation in wastewater treatment The Scientific Basis of Flocculation (pp. 219-268): Springer. Okour, Y., El Saliby, I., Shon, H. K., Vigneswaran, S., Kim, J. H., Cho, J., & Kim, I. S. (2009). Recovery of sludge produced from Ti-salt flocculation as pretreatment to seawater reverse osmosis. Desalination, 247(1), 53-63. Okour, Y., Shon, H., El Saliby, I., Naidu, R., Kim, J., & Kim, J.-H. (2010). Preparation and characterisation of titanium dioxide (TiO2) and thiourea-doped titanate nanotubes prepared from wastewater flocculated sludge. Bioresource technology, 101(5), 1453-1458. Packham, R. (1965). Some studies of the coagulation of dispersed clays with hydrolyzing salts. Journal of Colloid Science, 20(1), 81-92. Pelizzetti, E., & Minero, C. (1993). Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles. Electrochimica acta, 38(1), 47-55. Sangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced degradation of methylene blue on cosputtered M: TiO2 (M= Au, Ag, Cu) nanocomposite systems: a comparative study. The Journal of Physical Chemistry C, 114(33), 13955-13961. Savitz, D. A., Singer, P. C., Herring, A. H., Hartmann, K. E., Weinberg, H. S., & Makarushka, C. (2006). Exposure to drinking water disinfection by-products and pregnancy loss. American Journal of Epidemiology, 164(11), 1043-1051. Sclafani, A., & Herrmann, J. (1996). Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. The Journal of Physical Chemistry, 100(32), 13655-13661. Shi, B., Wei, Q., Wang, D., Zhu, Z., & Tang, H. (2007). Coagulation of humic acid: the performance of preformed and non-preformed Al species. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296(1), 141-148. Shon, H., Vigneswaran, S., Kim, I. S., Cho, J., Kim, G., Kim, J., & Kim, J.-H. (2007). Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater. Environmental Science & Technology, 41(4), 1372-1377. Shon, H. K., Vigneswaran, S., Kandasamy, J., Zareie, M. H., Kim, J. B., Cho, D. L., & Kim, J. H. (2009). Preparation and Characterization of Titanium Dioxide (TiO2) from Sludge produced by TiCl4 Flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 Coagulant Aids in Wastewater. Separation Science and Technology, 44(7), 1525-1543. Smith, E., & Kamal, Y. (2009). Optimizing treatment for reduction of disinfection by-product (DBP) formation. Water Science and Technology: Water Supply, 9(2), 191-198. Stevenson, F. J. (1994). Humus Chemistry: Genesis, Composition, Reactions: John Wiley & Sons. Sun, Y., Zhou, G., Xiong, X., Guan, X., Li, L., & Bao, H. (2013). Enhanced arsenite removal from water by Ti (SO4)2 coagulation. Water Research, 47(13), 4340-4348. Suwarnkar, M., Kadam, A., Khade, G., Gavade, N., & Garadkar, K. (2016). Modification of TiO2 nanoparticles by HZSM-5 for the enhancement in photodegradation of Acid Green 25. Journal of Materials Science: Materials in Electronics, 27(1), 843-851. Tan, R., He, Y., Zhu, Y., Xu, B., & Cao, L. (2003). Hydrothermal preparation of mesoporous TiO2 powder from Ti (SO4)2 with poly (ethylene glycol) as template. Journal of Materials Science, 38(19), 3973-3978. Tianyong, Z., Xiangzhong, L., & Jincai, Z. (1999). Investigation on photocatalytic degradation of dye wastewater with Titania produced in China. Chinese Journal of Catalysis, 3, 040. Tonejc, A. M., Djerdj, I., & Tonejc, A. (2001). Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders. Materials Science and Engineering: B, 85(1), 55-63. Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122(1), 178-192. Upton, W., & Buswell, A. (1937). Titanium salts in water purification. Industrial & Engineering Chemistry, 29(8), 870-871. Van Geluwe, S., Braeken, L., & Van der Bruggen, B. (2011). Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water Research, 45(12), 3551-3570. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. Vinodgopal, K., & Kamat, P. V. (1995). Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environmental Science & Technology, 29(3), 841-845. Wu, Y.-F., Liu, W., Gao, N.-Y., & Tao, T. (2011). A study of titanium sulfate flocculation for water treatment. Water Research, 45(12), 3704-3711. Wunderlich, W., Oekermann, T., Miao, L., Hue, N., Tanemura, S., & Tanemura, M. (2004). Electronic properties of nano-porous TiO2 and ZnO thin films-comparison of simulations and experiments. Journal of Ceramic Processing & Research, 5(4), 343-354. Yang, Y.-h., Hao, C., & Gang, P. (2007). Particle concentration effect in adsorption/desorption of Zn (II) on anatase type nano TiO2. Journal of Environmental Sciences, 19(12), 1442-1445. Yao, W., Zhang, B., Huang, C., Ma, C., Song, X., & Xu, Q. (2012). Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. Journal of Materials Chemistry, 22(9), 4050-4055. Zhang, W., Li, H., Kan, X., Dong, L., Yan, H., Jiang, Z., Yang, H., Li, A., & Cheng, R. (2012). Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117, 40-47. Zhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B: Environmental, 26(3), 207-215. Zhao, Y. X., Gao, B. Y., Qi, Q. B., Wang, Y., Phuntsho, S., Kim, J. H., Yue, Q. Y., Li, Q., & Shon, H. K. (2013). Cationic polyacrylamide as coagulant aid with titanium tetrachloride for low molecule organic matter removal. J Hazard Mater, 258–259, 84-92. Zhao, Y. X., Gao, B. Y., Shon, H. K., Cao, B. C., & Kim, J. H. (2011). Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts. J Hazard Mater, 185(2-3), 1536-1542. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20852 | - |
dc.description.abstract | 混凝膠凝污泥處理為現今污水處理程序中增加成本及造成環境污染的問題之一,故本實驗以硫酸鈦(Ti(SO4)2)取代傳統混凝劑,進行混凝膠凝實驗,探討Ti(SO4)2 去除水中有機物腐植酸(HA)之效果,並將混凝膠凝後之污泥回收再利用,經鍛燒後製備可再利用之二氧化鈦 HA-TiO2,藉由吸附及光催化實驗處理染料Acid Green 25(AG25),了解污泥回收再利用之可行性。混凝膠凝實驗中,探討不同混凝劑量(50、100、150、200、300、400 mg/L)及不同pH值(3、5、7、9、11、13),分析濁度、色度、TOC及UV254,獲得混凝最佳操作參數;經不同溫度鍛燒製備之HA-TiO2,以 FE-SEM、XRD 觀察觸媒表面結構、晶相結構、觸媒型態等特性;最後進行吸附及光催化實驗,透過控制不同鍛燒溫度(400、600、800℃)、HA-TiO2添加劑量(0.5、1.0、1.5 g/L)、pH值(3、5.5、9)及 AG25初始濃度(10、30、50 mg/L),藉由分析其色度及TOC去除率,探討吸附及光催化之最佳操作參數。
實驗結果顯示,添加150 mg/L Ti(SO4)2 去除100 ppm 之 HA 有良好的去除率,當混凝劑量添加不足時,硫酸鈦無法有效中和腐植酸電性,造成顆粒間無法凝聚;添加過量時,溶液中會發生電性逆轉的情形,產生再穩定現象,使溶液之濁度上升。同時當pH ≤ 11時,各項參數都有90%以上之去除率,當pH=13時,Ti(SO4)2 水解離子以負電荷為主,無法中和腐植酸電性,並發生溶液再穩定之現象,無法產生膠羽,無法透過混凝膠凝將 HA 去除。 觸媒特性分析結果顯示,600℃下鍛燒之HA-TiO2產生較為完整之顆粒,以圓形球狀為主,排列較為整齊緊密,晶相以銳鈦礦為主,經比對後與市售P25光觸媒具有最相似之晶型組成,當鍛燒溫度上升至800℃ 時,晶相組成將由銳鈦礦轉為金紅石,且不論以何種溫度進行鍛燒製備之觸媒,其表面元素組成以鈦及氧佔較大之百分比,而相較於市售P25,自製之HA-TiO2所包含之雜質較多。 吸附實驗中,於初始溶液pH=3,添加1 g/L 600℃下鍛燒之HA-TiO2,色度及TOC去除率分別為84%及80%,可得到最佳吸附效果,當鹼性條件下, HA-TiO2與AG25因靜電相斥而吸附效果下降,而添加過量之HA-TiO2並不影響吸附結果;光催化實驗方面,初始溶液pH=3並添加1 g/L 於600℃ 下鍛燒之HA-TiO2,為最佳光催化操作參數,色度及TOC去除率約為80%,經脫附後色度及TOC去除率分別為15%及10%,當添加過多之光觸媒時,光遮蔽效應發生,導致光催化效果下降。AG25隨著初始濃度上升而去除效果下降,染料脫附量同時隨著AG25初始濃度上升而增加。 | zh_TW |
dc.description.abstract | Sludge disposal is one of the most costly and environmentally problematic challenges of wastewater treatment worldwide. In this study, titanium sulfate (Ti(SO4)2) was used as coagulant to remove humic acid (HA) which represent organic matters. The coagulation performance was evaluated by adjusting the coagulation dosage (50, 100, 150, 200, 300, 400 mg/L) and the different initial pH (3, 5, 7, 9, 11, 13) of solution. After coagulation and flocculation process, the sludge was dehydrated in an oven at 105℃ for 12 hours, and then calcined for 24 hours to produce titanium dioxide (HA-TiO2). These photocatalyst were characterized by FE-SEM, EDS and XRD. The adsorption and photodegradation of Acid Green 25 (AG25) were investigated. The optimal operating parameters were analyzed by controlling the calcination temperature (400, 600, 800℃), initial pH (3, 5.5, 9), the dose of HA-TiO2 (0.5, 1.0, 1.5 g/L) and initial concentration of AG25 (10, 30, 50 mg/L) in adsorption and photocatalytic experiments.
When adding 150 mg/L coagulant into HA at pH≤11, the colority, UV254 and TOC removals were 99.5%, 96.0% and 92.0%, respectively. HA-TiO2 prepared from sludge, which calcinated at 600 ℃ showed regular round particles with a dimension of around 20-30 nm. The crystal structures of HA-TiO2 were Anatase and Rutile, which were similar to P25. The results show that AG25 can be removed from adsorption reaction with 1.0 g/L HA-TiO2, which calcinated at 600℃. When pH at 3, the discoloration and mineration rate were 84% and 80%, respectively. The degradation rate of AG25 was decreased when the initial concentration of dye increased. AG25 can be removed from photocatalytic reaction with HA-TiO2 and the degradation and mineralization rate were 15% and 10%, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:06:52Z (GMT). No. of bitstreams: 1 ntu-106-R04541115-1.pdf: 4032148 bytes, checksum: 1f97d1f1e631903f97222ac6411a67de (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 摘要 ii
Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 混凝膠凝 3 2-1-1 混凝膠凝機制 3 2-1-2 混凝劑種類 4 2-1-4 混凝膠凝污泥回收 7 2-2 二氧化鈦 8 2-2-1 二氧化鈦基本特性 8 2-2-2 二氧化鈦晶型結構 9 2-3 光催化反應 10 2-3-1 光催化反應機制 10 2-3-2 二氧化鈦光催化反應 11 2-3-3 二氧化鈦光催化降解染料相關文獻 12 2-4 二氧化鈦吸附作用 13 2-5 天然有機物 14 2-5-1 天然有機物來源與組成 14 2-5-2 腐植酸 15 2-5-3 天然有機物之處理程序 16 2-6 染料AG25 概述 17 2-6-1 AG25基本特性 17 2-6-2 AG25 物理及化學處理 18 第三章 材料與方法 21 3-1 實驗藥品 21 3-1-1 混凝膠凝 21 3-1-2 吸附及光催化實驗 21 3-2 實驗設備與分析儀器 22 3-2-1 混凝膠凝 22 3-2-2 光觸媒製備 22 3-2-3 吸附及光催化實驗 23 3-2-4 分析儀器 23 3-3 實驗操作方法 24 3-3-1 研究架構 24 3-3-2 混凝膠凝實驗 26 3-3-3 回收污泥製備光觸媒材料 28 3-3-4 吸附及光催化實驗 29 3-4 分析項目 31 3-4-1 污泥回收觸媒HA-TiO2分析 31 3-4-2 水樣分析 33 第四章 結果與討論 35 4-1 腐植酸混凝結果 35 4-1-1 不同混凝劑添加劑量之影響 35 4-1-2 不同pH值之影響 40 4-2 觸媒表面特性分析 45 4-2-1 高解析度場發射掃描式電子顯微鏡分析 45 4-2-2 能量散佈分析 50 4-2-3 高功率X光繞射分析 53 4-3 背景實驗 57 4-3-1 AG25全波長吸收光圖譜 57 4-3-2 AG25直接光解實驗 58 4-3-3 市售P25吸附及光催化降解AG25實驗 59 4-4 吸附實驗 60 4-4-1 吸附實驗-不同pH值 60 4-4-2 吸附實驗-不同鍛燒溫度觸媒 62 4-4-3 吸附實驗-不同HA-TiO2添加量 67 4-5 光催化實驗 69 4-5-1 光催化實驗-不同pH值 69 4-5-2 光催化實驗-不同鍛燒溫度觸媒 72 4-5-3 光催化實驗-不同HA-TiO2添加量 79 4-5-4 光催化實驗-不同AG25濃度 81 第五章 結論與建議 84 5-1 結論 84 5-2 建議 86 參考文獻 87 附錄 94 附錄一 JCPDS 資料庫-TiO2(Anatase) 94 附錄二 JCPDS 資料庫-TiO2(Rutile) 95 附錄三 各項實驗之數據 96 | |
dc.language.iso | zh-TW | |
dc.title | Ti(SO4)2混凝去除水中有機物及其污泥回收再利用之研究 | zh_TW |
dc.title | Study on Ti(SO4)2 Coagulation for Organic Matters Removal and Reuse of Coagulation/Flocculation Sludge | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林進榮,胡景堯 | |
dc.subject.keyword | 混凝膠凝,腐植酸,硫酸鈦,二氧化鈦,AG25, | zh_TW |
dc.subject.keyword | Coagulation and flocculation,Humic acid,Titanium sulfate,Titanium dioxide,AG25, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201701204 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-06-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
Appears in Collections: | 環境工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 3.94 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.