請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20814
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊彬(Chun-Pin Lin) | |
dc.contributor.author | Yao-Jen Chang | en |
dc.contributor.author | 張耀仁 | zh_TW |
dc.date.accessioned | 2021-06-08T03:04:53Z | - |
dc.date.copyright | 2017-09-08 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-07 | |
dc.identifier.citation | Accorinte Mde, L., Holland, R., Reis, A., et al. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 2008;34:1-6.
Aguilar, P.,Linsuwanont, P. Vital Pulp Therapy in Vital Permanent Teeth with Cariously Exposed Pulp: A Systematic Review. Journal of Endodontics 2011;37:581-587. Al-Sanabani, J. S., Madfa, A. A.,Al-Sanabani, F. A. Application of calcium phosphate materials in dentistry. Int J Biomater 2013;2013:876132. Ben-Nissan, B. (2014). Advances in Calcium Phosphate Biomaterials (B. Ben-Nissan Ed. 1st ed.): Springer Berlin Heidelberg. Bjorndal, L., Reit, C., Bruun, G., et al. Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci 2010;118:290-297. Bohner, M. New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures. Biomaterials 2004;25:741-749. Bos, P. K., DeGroot, J., Budde, M., Verhaar, J. A.,van Osch, G. J. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum 2002;46:976-985. Cavanaugh, D. J., Berndt, W. O.,Smith, T. E. DISASSOCIATION OF HEART CELLS BY COLLAGENASE. Nature 1963;200:261-262. Chang, K.-C., Chang, C.-C., Chen, W.-T., Hsu, C.-K., Lin, F.-H.,Lin, C.-P. Development of calcium phosphate/sulfate biphasic cement for vital pulp therapy. Dental Materials 2014;30:e362-e370. Chen, P. Y., Sun, J. S., Tsuang, Y. H., Chen, M. H., Weng, P. W.,Lin, F. H. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr Res 2010;30:191-199. Chiang, Y. C., Chang, H. H., Wong, C. C., et al. Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-beta1/VEGF reservoir for vital pulp therapy. Dental Materials 2016;32:1197-1208. Cvek, M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol 1992;8:45-55. Cvek, M., Cleaton-Jones, P. E., Austin, J. C.,Andreasen, J. O. Pulp reactions to exposure after experimental crown fractures or grinding in adult monkeys. J Endod 1982;8:391-397. D'Souza, R. N., Bachman, T., Baumgardner, K. R., Butler, W. T.,Litz, M. Characterization of cellular responses involved in reparative dentinogenesis in rat molars. J Dent Res 1995;74:702-709. Ginebra, M.-P., Canal, C., Espanol, M., Pastorino, D.,Montufar, E. B. Calcium phosphate cements as drug delivery materials. Advanced Drug Delivery Reviews 2012;64:1090-1110. Ginebra, M.-P., Fernández, E., Driessens, F. C. M.,Planell, J. A. Modeling of the Hydrolysis of α-Tricalcium Phosphate. Journal of the American Ceramic Society 1999;82:2808-2812. Glickman, G. N.,Seale, N. S. AAE and AAPD symposium overview: emerging science in pulp therapy--new insights into dilemmas and controversies. J Endod 2008;34:S1. Goldberg, M. (2014). The dental pulp (M. Goldberg Ed. 1st ed.): Springer-Verlag Berlin Heidelberg. Guideline on Pulp Therapy for Primary and Immature Permanent Teeth. Pediatr Dent 2016;38:280-288. Guideline on pulp therapy for primary and young permanent teeth. Pediatr Dent 2008;30:170-174. Hannahan, J. P.,Eleazer, P. D. Comparison of success of implants versus endodontically treated teeth. J Endod 2008;34:1302-1305. Hargreaves., K.,Berman., L. (2016). Cohen Pathways of the Pulp (K. Hargreaves. & L. Berman. Eds. 11ed ed.): Mosby. Huang, G. T. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med 2009;4:697-707. Huang, G. T., Yamaza, T., Shea, L. D., et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 2010;16:605-615. Hunziker, E. B.,Rosenberg, L. C. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996;78:721-733. Inuyama, Y., Kitamura, C., Nishihara, T., et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B Appl Biomater 2010;92:120-128. Jia, W., Zhao, Y., Yang, J., et al. Simvastatin Promotes Dental Pulp Stem Cell-induced Coronal Pulp Regeneration in Pulpotomized Teeth. J Endod 2016;42:1049-1054. Kaesemeyer, W. H., Caldwell, R. B., Huang, J.,Caldwell, R. W. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. Journal of the American College of Cardiology 1999;33:234-241. Kakehashi, S., Stanley, H. R.,Fitzgerald, R. J. THE EFFECTS OF SURGICAL EXPOSURES OF DENTAL PULPS IN GERM-FREE AND CONVENTIONAL LABORATORY RATS. Oral Surg Oral Med Oral Pathol 1965;20:340-349. Lc, C. Next generation calcium phosphate-based biomaterials. Dental materials journal 2009;28:1-10. Lee, Y. H., Kim, G. E., Cho, H. J., et al. Aging of in vitro pulp illustrates change of inflammation and dentinogenesis. J Endod 2013;39:340-345. Liao, C. J., Lin, Y. J., Chiang, H., Chiang, S. F., Wang, Y. H.,Jiang, C. C. Injecting partially digested cartilage fragments into a biphasic scaffold to generate osteochondral composites in a nude mice model. J Biomed Mater Res A 2007;81:567-577. Maltz, M., Oliveira, E. F., Fontanella, V.,Carminatti, G. Deep caries lesions after incomplete dentine caries removal: 40-month follow-up study. Caries Res 2007;41:493-496. Min, K. S., Lee, Y. M., Hong, S. O.,Kim, E. C. Simvastatin promotes odontoblastic differentiation and expression of angiogenic factors via heme oxygenase-1 in primary cultured human dental pulp cells. J Endod 2010;36:447-452. Mundy, G., Garrett, R., Harris, S., et al. Stimulation of Bone Formation in Vitro and in Rodents by Statins. Science 1999;286:1946-1949. Nakashima, M.,Iohara, K. Regeneration of dental pulp by stem cells. Adv Dent Res 2011;23:313-319. Niemeyer, P., Krause, U., Fellenberg, J., et al. Evaluation of mineralized collagen and alpha-tricalcium phosphate as scaffolds for tissue engineering of bone using human mesenchymal stem cells. Cells, tissues, organs 2003;177:68-78. Nilsson, M., Fernandez, E., Sarda, S., Lidgren, L.,Planell, J. A. Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 2002;61:600-607. Nilsson, M., Zheng, M. H.,Tagil, M. The composite of hydroxyapatite and calcium sulphate: a review of preclinical evaluation and clinical applications. Expert Rev Med Devices 2013;10:675-684. Nishimura, K. [Local application of simvastatin to rat incisor sockets augments bone]. Kokubyo Gakkai Zasshi 2008;75:49-54. Nyan, M., Miyahara, T., Noritake, K., et al. Molecular and tissue responses in the healing of rat calvarial defects after local application of simvastatin combined with alpha tricalcium phosphate. J Biomed Mater Res B Appl Biomater 2010;93:65-73. Obradovic, B., Martin, I., Padera, R. F., Treppo, S., Freed, L. E.,Vunjak-Novakovic, G. Integration of engineered cartilage. J Orthop Res 2001;19:1089-1097. Okamoto, H., Arai, K., Matsune, K., et al. The Usefulness of New Hydroxyapatite as a Pulp Capping Agent in Rat Molars. International Journal of Oral-Medical Sciences 2006;5:50-56. Okamoto, Y., Sonoyama, W., Ono, M., et al. Simvastatin induces the odontogenic differentiation of human dental pulp stem cells in vitro and in vivo. J Endod 2009;35:367-372. Plotino, G., Buono, L., Grande, N. M., Pameijer, C. H.,Somma, F. Nonvital tooth bleaching: a review of the literature and clinical procedures. J Endod 2008;34:394-407. Randow, K.,Glantz, P. O. On cantilever loading of vital and non-vital teeth. An experimental clinical study. Acta Odontologica Scandinavica 1986;44:271-277. Sakaguchi, Y., Sekiya, I., Yagishita, K., Ichinose, S., Shinomiya, K.,Muneta, T. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 2004;104:2728-2735. Sasaki, T.,Kawamata-Kido, H. Providing an environment for reparative dentine induction in amputated rat molar pulp by high molecular-weight hyaluronic acid. Archives of Oral Biology 1995;40:209-219. Sato, D., Nishimura, K., Ishioka, T., Kondo, H., Kuroda, S.,Kasugai, S. Local Application of Simvastatin to Rat Iincisor Socket: Carrier-dependent Effect on Bone Augmentation. Journal of Oral Tissue Engineering 2005;2:81-85. Shimizu, E., Jong, G., Partridge, N., Rosenberg, P. A.,Lin, L. M. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod 2012;38:1293-1297. Shimizu, E., Ricucci, D., Albert, J., et al. Clinical, radiographic, and histological observation of a human immature permanent tooth with chronic apical abscess after revitalization treatment. J Endod 2013;39:1078-1083. Stein, D., Lee, Y., Schmid, M. J., et al. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol 2005;76:1861-1870. Subramaniam, S., Fang, Y. H., Sivasubramanian, S., Lin, F. H.,Lin, C. P. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Biomaterials 2016;74:99-108. TenHuisen, K. S.,Brown, P. W. Formation of calcium-deficient hydroxyapatite from α-tricalcium phosphate. Biomaterials 1998;19:2209-2217. Thomas, M. V.,Puleo, D. A. Calcium sulfate: Properties and clinical applications. J Biomed Mater Res B Appl Biomater 2009;88:597-610. Trope, M. Regenerative potential of dental pulp. J Endod 2008;34:S13-17. Tziafas, D., Smith, A. J.,Lesot, H. Designing new treatment strategies in vital pulp therapy. J Dent 2000;28:77-92. Zhang, W.,Yelick, P. C. Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent 2010;2010:856087. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20814 | - |
dc.description.abstract | 牙髓為具有修復與再生能力之組織,在治療具可回復性的牙髓傷害時,藉由適當的覆髓材料,可刺激形成牙本質橋之屏障阻擋外界刺激並保護剩餘健康的牙髓以保留牙髓的活性。近年來,牙髓再生的組織工程研究漸漸受到重視,在部分移除牙髓甚至完全移除牙髓的情況下,利用合適的骨架材料攜帶藥物或生長因子,期望引導剩餘牙髓或根尖組織之幹細胞至缺損部位,達到牙髓/牙本質再生的目的。
本研究之目的為利用磷酸鈣/硫酸鈣雙相材料為骨架,並以透明質酸攜帶Simvastatin及膠原蛋白酶,以調拌性質、硬化時間、降解測試、電子顯微鏡觀察及能量散射光譜分析材料性質及水合結晶產物;並進行雙相材料攜帶Simvastatin及膠原蛋白酶之藥物釋放測試;此外,利用人類牙髓幹細胞進行體外生物相容性測試,包括以AlamarBlue測試細胞存活及LDH測試細胞毒性。最後以米格魯犬作為模型進行動物實驗,並以micro–computed tomography (μ-CT)影像及組織學切片觀察分析。 結果顯示磷酸鈣加入硫酸鈣後,可降低其硬化時間為15-20分鐘,符合臨床操作性質。此材料水合後會形成具有孔洞之表面結構,有利於細胞生長,Simvasttin與膠原蛋白酶在一小時內即有大量釋放之現象,一天內即可達到總釋放量之一半;AlamarBlue與LDH的結果顯示雙相材料無論是否加入Simvastatin或是膠原蛋白酶,對於人類牙髓幹細胞之生物相容性良好;動物實驗中,含有Simvastatin及膠原蛋白酶的雙相材料可誘導牙本質的再生,並隨著材料之降解,鈣化組織會長入缺損之中。因此含Simvastatin及膠原蛋白酶之磷酸鈣/硫酸鈣雙相材料相當具有潛力作為活髓治療以及牙髓/牙本質再生的材料。 | zh_TW |
dc.description.abstract | The dental pulp is able to repair and regenerate itself. To treat the reversible pulpitits, we can stimulate the formation of the barrier of the dentin bridge by blocking the external stimuli and protecting the remaining healthy pulp with appropriate capping material to maintain the pulp vitality. In recent years, tissue engineering in pulp regeneration has been paid more and more attention. In the case of partial removal of pulp or even complete removal of pulp, we hope to attract the stem cells from remaining pulp or apical tissue to the by use of appropriate scaffold to carry drugs or growth factors to achieve the purpose of pulp / dentin regeneration.
The aim of this study was to evaluate the feasibility of biphasic calcium phosphate/calcium sulfate hemihydrates (CPC-CSH) biomaterial containing Simvastatin(Sim) and Collagenase(Col) for vital pulp therapy. Combination of CPC with various amounts of CSH was tested for handling property, setting time, degradation and SEM-EDS observation. Drug releasing pattern of Simvastatin and Collagenase combined with CPC-CSH was analyzed. In vitro biocompatibility and bioactivity of CPC/CSH/Sim/Col were performed with human dental pulp cells (hDPSCs). Moreover, in vivo evaluation was done using a dog animal model by micro-CT radiographic and histological analysis. The results shows that the developed CPC(CPC7CSH3), which contains 30 wt% CSH , exhibited optimal setting time and porous structure for clinical use. The cell viability and cytotoxicity exhibited that the CPC7CSH3 did not harm to the hDPSCs with or without contining Simvastatin or Collagenase. The animal study presents this CPC7/CSH3/Sim/Col biphasic biomaterial can induce dentin bridge formation. Based on the results, the developed CPC7/CSH3/Sim/Col biphasic biomaterial has great potential as a material for vital pulp therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:04:53Z (GMT). No. of bitstreams: 1 ntu-106-R03422018-1.pdf: 8406807 bytes, checksum: 7c00cddf922c6e5d7ef79e81236521d6 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II 圖次 VII 表次 VIII 第一章 前言 1 第二章 文獻回顧 3 2.1 牙髓牙本質複合體 (Pulp-dentin Complex) 3 2.2 活髓保存於臨床牙科醫療的重要性 4 2.3 活髓治療 5 2.3.1 間接覆髓 5 2.3.2 直接覆髓與冠髓切除 6 2.3.3 Cell-based pulp regeneration 6 2.3.4 Non-cell-based pulp regeneration 7 2.4 活髓保存材料於活髓治療的重要性 8 2.5 透明質酸(Hyaluronic Acid) 9 2.6 磷酸鈣/硫酸鈣雙相生醫材料於活髓治療之應用潛力 10 2.6.1 磷酸鈣骨水泥 10 2.6.2 硫酸鈣骨水泥 10 2.7 膠原蛋白酶(collagenase)的應用原理 11 2.8 Simvastatin對於促進牙髓細胞再生之效果 12 2.9 Simvastatin結合生醫材料用於活髓治療 13 第三章 動機與目的 15 第四章 材料與方法 17 4.1 磷酸鈣/硫酸鈣雙相生醫材料之製備 17 4.1.1 磷酸鈣/硫酸鈣雙相材料製備 17 4.1.2 磷酸鈣/硫酸鈣雙相材料添加透明質酸(CPC/CSH/HA) 17 4.1.3 攜帶Simvastatin之透明質酸溶液製備(Sim@HA) 17 4.1.4 攜帶膠原蛋白酶(Collagenase)之透明質酸溶液製備(Col@HA) 18 4.1.5 磷酸鈣/硫酸鈣雙相材料攜帶 Simvastatin 及膠原蛋白酶製備(CPC/CSH/Sim/Col biphasic cement) 18 4.2 硬化時間測試 (Setting time) 19 4.2.1 測試樣本備製 19 4.2.2 測試方法 19 4.3 降解測試 (Degradation test) 19 4.3.1 測試樣本備製 19 4.3.2 測試方法 20 4.4 表面型態觀察:掃描式電子顯微鏡 (SEM observation) 20 4.4.1 儀器規格 20 4.4.2 操作條件 21 4.5 表面元素分析:能量散射光譜分析儀(EDS) 觀察 21 4.5.1 儀器規格與操作條件 21 4.6 Simvastatin藥物測試以及膠原蛋白酶釋放測試 22 4.7 材料生物相容性測試 23 4.7.1 人類牙髓幹細胞(human dental pulp stem cell, hDPSCs)之初級培養(primary culture) 23 4.7.2 細胞解凍 24 4.7.3 細胞計數 24 4.7.4 萃取液製備 24 4.7.5 細胞存活率實驗(alamarBlue cell viability assay) 25 4.7.6 細胞毒性測試(Lactate Dehydrogenase, LDH) 25 4.8 動物實驗 26 4.8.1 實驗動物之選擇與照顧 26 4.8.2 實驗步驟 27 4.8.3 動物灌流 28 4.8.4 標本備置 28 4.8.5 μ-CT 照射 29 4.8.6 組織學切片標本備置 29 4.8.7 μ-CT及組織學評分標準 29 第五章 結果 31 5.1 硬化時間 (Setting time) 31 5.2 降解測試 (Degradation test) 31 5.3 表面型態觀察:掃描式電子顯微鏡 (SEM observation) 32 5.4 表面元素分析:能量散射光譜分析儀(EDS) 觀察 33 5.5 Simvastatin藥物釋放以及膠原蛋白酶釋放測試 33 5.6 材料生物相容性測試 34 5.6.1 LDH 34 5.6.2 Alamar blue 34 5.7 動物實驗 34 5.7.1 μ-CT 照射影像分析 34 5.7.2 組織學切片觀察 35 第六章 討論 37 6.1 添加半水硫酸鈣對於磷酸鈣硫酸鈣骨水泥之影響 37 6.2 不同比例磷酸鈣硫酸鈣雙相材料之水合產物與顯微結構探討 38 6.3 探討磷酸鈣硫酸鈣雙相材料對於膠原蛋白酶與Simvastatin釋放之影響 39 6.4 探討加入膠原蛋白酶與Simvastatin對於磷酸鈣硫酸鈣雙相材料於活體之整體表現 41 第七章 結論 42 第八章 未來研究方向 43 參考文獻 44 附表 51 附圖 52 | |
dc.language.iso | zh-TW | |
dc.title | 研發透明質酸攜帶膠原蛋白酶及Simvastatin之磷酸鈣/硫酸鈣雙相生醫材料應用於活髓治療 | zh_TW |
dc.title | Development of Calcium Phosphate/Calcium Sulfate Biphasic Biomedical Material with Hyaluronic Acid Containing Collagenase and Simvastatin for Vital Pulp Therapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 章浩宏(Hao-Hueng Chang),王姻麟(Yin-Lin Wang),廖運炫(Yunn-Shiuan Liao),林弘萍(Hong Ping Lin) | |
dc.subject.keyword | 磷酸鈣,硫酸鈣,活髓治療,Simvastatin,膠原蛋白?, | zh_TW |
dc.subject.keyword | calcium phosphate,calcium sulfate hemihydrates,vital pulp therapy,simvastatin,collagenase, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201701396 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-07-07 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 8.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。