請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20806完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 章浩宏(Hao-Hueng Chang) | |
| dc.contributor.author | Ting-An Lin | en |
| dc.contributor.author | 林庭安 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:04:30Z | - |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-10 | |
| dc.identifier.citation | [1] Tian S, Jiang C, Liu X, Xu S, Zhang Z, Chen H, et al. Hypermethylation of IFN-gamma in oral cancer tissues. Clin Oral Investig. 2017.
[2] Johnson NW, Jayasekara P, Amarasinghe AA. Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontol 2000. 2011;57:19-37. [3] Yang X, Ruan H, Hu X, Cao A, Song L. miR-381-3p suppresses the proliferation of oral squamous cell carcinoma cells by directly targeting FGFR2. Am J Cancer Res. 2017;7:913-22. [4] Brocklehurst P, Kujan O, O'Malley LA, Ogden G, Shepherd S, Glenny AM. Screening programmes for the early detection and prevention of oral cancer. Cochrane Database Syst Rev. 2013:CD004150. [5] Hung KF, Lai KC, Liu TY, Liu CJ, Lee TC, Lo JF. Asb6 upregulation by Areca nut extracts is associated with betel quid-induced oral carcinogenesis. Oral Oncol. 2009;45:543-8. [6] Chen CL, Chi CW, Chang KW, Liu TY. Safrole-like DNA adducts in oral tissue from oral cancer patients with a betel quid chewing history. Carcinogenesis. 1999;20:2331-4. [7] Sasahira T, Kirita T, Kuniyasu H. Update of molecular pathobiology in oral cancer: a review. Int J Clin Oncol. 2014;19:431-6. [8] Li WC, Lee PL, Chou IC, Chang WJ, Lin SC, Chang KW. Molecular and cellular cues of diet-associated oral carcinogenesis--with an emphasis on areca-nut-induced oral cancer development. J Oral Pathol Med. 2015;44:167-77. [9] Wang TY, Peng CY, Lee SS, Chou MY, Yu CC, Chang YC. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget. 2016;7:84072-81. [10] Hsieh CH, Hsu HH, Shibu MA, Day CH, Bau DT, Ho CC, et al. Down-regulation of beta-catenin and the associated migration ability by Taiwanin C in arecoline and 4-NQO-induced oral cancer cells via GSK-3beta activation. Mol Carcinog. 2017;56:1055-67. [11] Chang MC, Chan CP, Chen YJ, Hsien HC, Chang YC, Yeung SY, et al. Areca nut components stimulate ADAM17, IL-1alpha, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling. Oncotarget. 2016;7:16879-94. [12] Tsai KY, Su CC, Chiang CT, Tseng YT, Lian IB. Environmental heavy metal as a potential risk factor for the progression of oral potentially malignant disorders in central Taiwan. Cancer Epidemiol. 2017;47:118-24. [13] Tsai ST, Wong TY, Ou CY, Fang SY, Chen KC, Hsiao JR, et al. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer. Int J Cancer. 2014;135:2424-36. [14] Johnson JJ, Miller DL, Jiang R, Liu Y, Shi Z, Tarwater L, et al. Protease-activated Receptor-2 (PAR-2)-mediated Nf-kappaB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma. J Biol Chem. 2016;291:6936-45. [15] Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12:895-904. [16] Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22:234-49. [17] Suton P, Salaric I, Granic M, Mueller D, Luksic I. Prognostic significance of extracapsular spread of lymph node metastasis from oral squamous cell carcinoma in the clinically negative neck. Int J Oral Maxillofac Surg. 2017;46:669-75. [18] Xu C, Wang P, Liu Y, Zhang Y, Fan W, Upton MP, et al. Integrative genomics in combination with RNA interference identifies prognostic and functionally relevant gene targets for oral squamous cell carcinoma. PLoS Genet. 2013;9:e1003169. [19] Irani S. Metastasis to head and neck area: a 16-year retrospective study. Am J Otolaryngol. 2011;32:24-7. [20] Hirshberg A, Shnaiderman-Shapiro A, Kaplan I, Berger R. Metastatic tumours to the oral cavity - pathogenesis and analysis of 673 cases. Oral Oncol. 2008;44:743-52. [21] Irani S. Distant metastasis from oral cancer: A review and molecular biologic aspects. J Int Soc Prev Community Dent. 2016;6:265-71. [22] Takes RP, Rinaldo A, Silver CE, Haigentz M, Jr., Woolgar JA, Triantafyllou A, et al. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol. 2012;48:775-9. [23] Srinivasan S, Leekha N, Gupta S, Mithal U, Arora V, De S. Distant Skin Metastases from Carcinoma Buccal Mucosa: A Rare Presentation. Indian J Dermatol. 2016;61:468. [24] Yoskovitch A, Hier MP, Okrainec A, Black MJ, Rochon L. Skin metastases in squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg. 2001;124:248-52. [25] Cheng EH, Liu JY, Lee TH, Huang CC, Chen CI, Huang LS, et al. Requirement of Leukemia Inhibitory Factor or Epidermal Growth Factor for Pre-Implantation Embryogenesis via JAK/STAT3 Signaling Pathways. PLoS One. 2016;11:e0153086. [26] Smith AG, Nichols J, Robertson M, Rathjen PD. Differentiation inhibiting activity (DIA/LIF) and mouse development. Dev Biol. 1992;151:339-51. [27] Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, et al. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 1987;6:3995-4002. [28] Metcalfe SM. LIF in the regulation of T-cell fate and as a potential therapeutic. Genes Immun. 2011;12:157-68. [29] Junk DJ, Bryson BL, Jackson MW. HiJAK'd Signaling; the STAT3 Paradox in Senescence and Cancer Progression. Cancers (Basel). 2014;6:741-55. [30] Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, et al. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest. 2013;123:5269-83. [31] Morton SD, Cadamuro M, Brivio S, Vismara M, Stecca T, Massani M, et al. Leukemia inhibitory factor protects cholangiocarcinoma cells from drug-induced apoptosis via a PI3K/AKT-dependent Mcl-1 activation. Oncotarget. 2015;6:26052-64. [32] Yue X, Zhao Y, Zhang C, Li J, Liu Z, Liu J, et al. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016;7:3777-90. [33] Hirai H, Karian P, Kikyo N. Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J. 2011;438:11-23. [34] Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology. 2000;141:4365-72. [35] Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol. 2002;169:3353-62. [36] Nguyen HN, Noss EH, Mizoguchi F, Huppertz C, Wei KS, Watts GF, et al. Autocrine Loop Involving IL-6 Family Member LIF, LIF Receptor, and STAT4 Drives Sustained Fibroblast Production of Inflammatory Mediators. Immunity. 2017;46:220-32. [37] Zou Y, Takano H, Mizukami M, Akazawa H, Qin Y, Toko H, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation. 2003;108:748-53. [38] Humbert L, Ghozlan M, Canaff L, Tian J, Lebrun JJ. The leukemia inhibitory factor (LIF) and p21 mediate the TGFbeta tumor suppressive effects in human cutaneous melanoma. BMC Cancer. 2015;15:200. [39] Hergovich A. YAP-Hippo signalling downstream of leukemia inhibitory factor receptor: implications for breast cancer. Breast Cancer Res. 2012;14:326. [40] Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 2012;18:1511-7. [41] Wysoczynski M, Miekus K, Jankowski K, Wanzeck J, Bertolone S, Janowska-Wieczorek A, et al. Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res. 2007;67:2131-40. [42] Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C, et al. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun. 2014;5:5218. [43] Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature. 1986;321:776-9. [44] Togashi Y, Kogita A, Sakamoto H, Hayashi H, Terashima M, de Velasco MA, et al. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer Lett. 2015;356:819-27. [45] Sharkey DJ, Schjenken JE, Mottershead DG, Robertson SA. Seminal fluid factors regulate activin A and follistatin synthesis in female cervical epithelial cells. Mol Cell Endocrinol. 2015;417:178-90. [46] Luisi S, Florio P, Reis FM, Petraglia F. Inhibins in female and male reproductive physiology: role in gametogenesis, conception, implantation and early pregnancy. Hum Reprod Update. 2005;11:123-35. [47] Li D, Duan M, Feng Y, Geng L, Li X, Zhang W. MiR-146a modulates macrophage polarization in systemic juvenile idiopathic arthritis by targeting INHBA. Mol Immunol. 2016;77:205-12. [48] Ohga E, Matsuse T, Teramoto S, Katayama H, Nagase T, Fukuchi Y, et al. Effects of activin A on proliferation and differentiation of human lung fibroblasts. Biochem Biophys Res Commun. 1996;228:391-6. [49] Robson NC, Wei H, McAlpine T, Kirkpatrick N, Cebon J, Maraskovsky E. Activin-A attenuates several human natural killer cell functions. Blood. 2009;113:3218-25. [50] Bufalino A, Cervigne NK, de Oliveira CE, Fonseca FP, Rodrigues PC, Macedo CC, et al. Low miR-143/miR-145 Cluster Levels Induce Activin A Overexpression in Oral Squamous Cell Carcinomas, Which Contributes to Poor Prognosis. PLoS One. 2015;10:e0136599. [51] Wamsley JJ, Kumar M, Allison DF, Clift SH, Holzknecht CM, Szymura SJ, et al. Activin upregulation by NF-kappaB is required to maintain mesenchymal features of cancer stem-like cells in non-small cell lung cancer. Cancer Res. 2015;75:426-35. [52] Lee HY, Li CC, Huang CN, Li WM, Yeh HC, Ke HL, et al. INHBA overexpression indicates poor prognosis in urothelial carcinoma of urinary bladder and upper tract. J Surg Oncol. 2015;111:414-22. [53] Luo Q, Wang C, Jin G, Gu D, Wang N, Song J, et al. LIFR functions as a metastasis suppressor in hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway. Carcinogenesis. 2015;36:1201-12. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20806 | - |
| dc.description.abstract | 目的:白血病抑制因子是IL-6 型細胞因子群的一個成員,其可藉由調控重要的訊息途徑包括 JAK / STAT3,PI3K,和ERK1 / 2 等訊息傳導途徑來調控細胞的增殖與存活。文獻回顧顯示白血病抑制因子在許多癌症的癌化過程中扮演重要且複雜的角色,其與間質組織有交互作用而影響癌化的過程及腫瘤的擴散;但白血病抑制因子在腫瘤發生中的確切作用仍然未知,特別在口腔癌中仍缺乏深入探討。
實驗設計:本研究包含了以免疫組織染色技術標定臨床口腔癌患者病理組織標本與相關之臨床參數,進行相關性分析,進一步更利用口腔癌細胞株進行白血病抑制因子可能的機制及角色探討,我們利用SAS、CA9-22、HSC3與Cal27四株口腔鱗狀上皮細胞癌細胞株來探討白血病抑制因子表現量被小髮夾型核糖核酸抑制或轉殖表現質體過度後之移行能力、侵襲能力以及生長能力是否受到影響。在細胞移動能力的測定上,利用博登細胞移行器實驗進行分析;生長能力使用細胞存活率分析進行測定。藉由核糖核酸微列陣與基因組富集分析主要訊息傳遞途徑。 結果:臨床病患之組織病理顯示在發生淋巴轉移及患者,其白血病抑制因子染色表現亦較明顯(p=0.022),腫瘤分期較為嚴重的第三及四期患者與染色表現亦明顯相關(p=0.002),進一步在細胞實驗發現白血病抑制因子與細胞移動和侵襲能力呈現正相關,抑制SAS與Cal27細胞中白血病抑制因子表現量後會使細胞移動能力明顯降低,但不影響細胞增生能力;相反地過量表現白血病抑制因子在口腔癌細胞株中則會促進癌細胞之轉移與侵襲能力。經由核糖核酸微陣列分析以及基因組富集分析認為A次單位抑制素(Inhibin beta A subunit, INHBA)為白血病抑制因子調控癌症進程之重要下游分子。過度表現INHBA後可顯著恢復細胞因白血病抑制因子抑制而造成之移動能力的下降。 結論:白血病抑制因子在口腔癌的進展過程中,可藉由侵襲及移動能力達到影響病人局部淋巴擴散及造成較嚴重的臨床分期結果,若能調控作為下游的INHBA訊息傳遞,白血病抑制因子有潛力成為抑制口腔癌惡性腫瘤局部擴散之治療目標。 | zh_TW |
| dc.description.abstract | Purpose:
Oral squamous cell carcinoma (OSCC) is the fifth common cancer worldwide. Distant metastasis is rare, but presents extremely poor prognosis clinically. Leukemia inhibitory factor (LIF) has been demonstrated an oncogene in several cancers, and we hypothesis that LIF might play crucial role in OSCC progression and metastasis. Methods: LIF expression was detected in OSCC samples by Immunohistochemistry. The ectopic LIF expression and silencing LIF were performed by LIF expression plasmids and short-hairpin RNA transfection in vitro, respectively. Boyden chamber assay was used to check migration and invasion abilities. Proliferation ability was analyzed by MTT. High throughput microarray analysis and GSEA analysis were also included. Statistical analyses were performed with unpaired Student’s two-tailed t test. A P value of <0.05 was considered significant. Results: Investigations on clinical parameters of OSCC patient and the expression of LIF revealed that patients with positive lymph node metastasis showed high expression of LIF protein (p = 0.022). Also, patient suffered from advanced cancer stage show high expression of LIF (p =0.002). In vitro, transient and stable knockdown LIF significantly decreased migration and invasion abilities. Moreover, overexpressed LIF could enhance OSCC cell motility (P < 0.05), but showed no effects on proliferation ability. In addition, using high throughput mRNA analysis and GSEA analysis, we identified INHBA as a crucial downstream effecter of LIF-promoted OSCC progression. Transfected with INHBA expression plasmid could significantly restore the migration and invasion abilities in shLIF stable transfectants (P < 0.05). Conclusion: Leukemia inhibitory factor contributes to cancer progression by enhancing regional lymphatic spread therefore leads to advanced cancer stage clinically. Regulation of the LIF downstream molecule such as INHBA thus can prohibition the invasion or migration ability of cancer cell, targeting on the leukemia inhibitory factor can be a potential strategy in preventing cancer progression and spreading in future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:04:30Z (GMT). No. of bitstreams: 1 ntu-106-R04450006-1.pdf: 3056844 bytes, checksum: d7bdd33e4ee5661f8404f67e7e5a026c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i Abstract in Chinese (中文摘要) ii Abstract in English iv Introduction 1 1. Oral squamous cell carcinoma (OSCC) 1 1.1 Risk factors of oral cancer in Taiwan 1 1.2 The distant metastasis of oral cancer 3 2. Leukemia inhibitory factor (LIF) 3 2.1 The discovery of LIF 3 2.2 Functions of LIF 4 2.3 LIF and cancer 5 2.4 LIF and oral cancer 6 3. Inhibin beta A subunit (INHBA) 6 3.1 The discovery of INHBA 6 3.2 Functions of INHBA 7 3.3 INHBA and cancer 8 Materials and Methods 9 Results 17 LIF play a role in regional lymph node involvement and advanced stage during OSCC progression 17 LIF enhanced cell migration and invasion abilities in OSCC cells 18 LIF has little effect on cell proliferation in OSCC cells 19 Down-regulation of LIF increases cell migration and invasion but not affect cell proliferation in Cal27 transfectants 20 LIF regulated the cell migration and invasion through outside-in signaling 21 Identification of the downstream targets, which influence metastasis ability, regulated by LIF in OSCC cells 21 INHBA was an important downstream effector in LIF-enhanced OSCC progression 22 Relationship between LIF and INHBA expression in the clinical OSCC patients 24 Discussion 25 Figure 28 Figure 1. Immunohistochemical staining of LIF expression in OSCC patients 28 Figure 2. Transiently transfected LIF expression plasmids increased cell motilities but did not alter proliferation ability in CA9-22/HSC3 cells. 29 Figure 3. LIF enhanced cell migration and invasion abilities in Cal27/SAS cells. 32 Figure 4. The cell motilities were increased in rLIF protein treatment and were decreased in LIF neutralization antibody treatment. 33 Figure 5. High throughput mRNA microarray analysis and Gene Set Enrichment Analysis in Cal27 transfectants. 35 Figure 6. Identification of INHBA as the major downstream effector in LIF enhances oral cancer progression. 37 Figure 7. INHBA is positively correlated with LIF in OSCC patients. 39 Supplemental figures 40 Tables 41 Table 1 Correlation between LIF expression and clinicopathological parameters 41 Table 2 Correlation between LIF expression and habit of betel nut chewing and smoking 43 Table 3. RT-PCR primer sequences 44 Table 4. The reference of LIF in Different cancer 45 Table 5. High throughput mRNA microarray analysis in Cal27 transfectants 46 References 47 | |
| dc.language.iso | en | |
| dc.subject | INHBA | zh_TW |
| dc.subject | 口腔鱗狀上皮細胞癌 | zh_TW |
| dc.subject | 移行 | zh_TW |
| dc.subject | 侵襲 | zh_TW |
| dc.subject | 白血病抑制因子 | zh_TW |
| dc.subject | Migration | en |
| dc.subject | Oral squamous cell carcinoma | en |
| dc.subject | INHBA | en |
| dc.subject | LIF | en |
| dc.subject | Invasion | en |
| dc.title | 探討白血病抑制因子於口腔鱗狀細胞癌進展過程中所扮演之角色及機制研究 | zh_TW |
| dc.title | Investigation of The Role And Mechanism of Leukemia Inhibitory Factor in Oral Squamous Cell Carcinoma Progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭彥彬,林芸薇 | |
| dc.subject.keyword | 口腔鱗狀上皮細胞癌,移行,侵襲,白血病抑制因子,INHBA, | zh_TW |
| dc.subject.keyword | Oral squamous cell carcinoma,Migration,Invasion,LIF,INHBA, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201701411 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-07-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
