Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20804
標題: 採用線上看診之決策樹分類—以台灣為例
The Decision-Tree Based Classification of E-Visits: A Case Study in Taiwan
作者: Pin-Syuan Ho
何品璇
指導教授: 陳靜枝
關鍵字: 線上看診,醫療數據探勘,資料分類,決策樹,健保資料分析,
E-Visit,Healthcare Analytics,Data Classification,Decision Tree,Healthcare Insurance Data Mining,
出版年 : 2017
學位: 碩士
摘要: 線上看診透過網路平台使病人可在線上取得醫療看診服務,相較於一般門診的看診方式,線上看診具有更高的效率以及便利性。尤其對於居住在偏鄉地區、行動不便、患有慢性疾病的病人來說,線上看診是更方便的醫療管道。目前已有許多歐美國家開放線上看診等相關醫療服務,而對於尚未開放線上看診的國家,應在開放線上看診或擬定相關政策前,對於開放線上看診所帶來的影響進行全面的預估以及規劃。
本研究提出一以決策樹為基礎的線上看診分類方法分類病人會使用線上看診的情況,我們藉由現有的線上看診研究所提供會使用線上看診的病人特徵,以及病人的看診記錄進行分類。透過決策樹模型得到一組線上看診的分類規則。
本研究以尚未開放線上看診的台灣為例,利用台灣健保資料庫中2012年的資料進行分析,透過線上看診的決策樹分類模型得到一組線上看診的分類規則,了解病人會使用線上看診的情況,並可預估可能使用線上看診的人數比例。
本研究提出的方法利用已開放線上看診國家的研究結果分類看診記錄,並提供一組清楚的線上看診分類規則,可提供尚未開放線上看診的國家進行開放前的評估與計劃。而開放線上看診後,亦可透過此方法更新分類規則,因應病人行為模式的改變,以確保醫療服務的穩定。此方法的概念不只可應用在線上看診的預估,亦可應用在其他新服務或新產品的推行規劃。
E-Visit is the consultation service delivering the health care online, which is more efficient and effective than in-office visit, especially for patients living in rural area, disabled, or with chronic diseases. Some countries have already implemented e-visits. For the countries have not yet implemented e-visits, the governments have to make a comprehensive preparation and predict the effect of implementing e-visits.
This study proposes a decision-tree based e-visit classification approach (DTEVCA) to determine clinic visits qualified as e-visits using the clinics’ medical records and patients’ demographic data. This study assumes that health care insurance (i.e., national health insurance) will subsidize the e-visit service cost, in which case it is essential to identify patients who will benefit most from e-visit service. Using a large data set from Taiwan’s National Health Insurance, this study verifies the efficiency and validity of the DTEVCA. The results indicate that this approach can accurately classify clinic in-office visits that could switch to e-visit service. The straightforward rules of this decision tree also give insurance agencies a clear guideline to understand the circumstance of using e-visits and predict the effect of implementing e-visits in Taiwan.
The result of this study can help the countries that have not yet implemented e-visits to improve the policy formulation process or academic researches. The DTEVCA can update the classification rules using new data to correct the biases and ensure the stability of the e-visit system. In addition, the concept of this approach is feasible not only for e-visit service but also for other “new services” such as new products or new policies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20804
DOI: 10.6342/NTU201701365
全文授權: 未授權
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.88 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved