Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20756
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻(Cheng-Hung Wu)
dc.contributor.authorYi-Chun Yaoen
dc.contributor.author姚怡均zh_TW
dc.date.accessioned2021-06-08T03:01:58Z-
dc.date.copyright2017-07-27
dc.date.issued2017
dc.date.submitted2017-07-20
dc.identifier.citation[1] Afzalirad, M., & Rezaeian, J. (2015). Design of high-performing hybrid meta-heuristics for unrelated parallel machine scheduling with machine eligibility and precedence constraints. Engineering Optimization, 1-21.
[2] Al-Zubaidi, H., & Christer, A. H. (1997). Maintenance manpower modelling for a hospital building complex. European Journal of Operational Research, 99(3), 603-618.
[3] Bäckert, W., & Rippin, D. W. T. (1985). The determination of maintenance strategies for plants subject to breakdown. Computers & chemical engineering, 9(2), 113-126.
[4] Bajestani, M. A. (2014). Integrating Maintenance Planning and Production Scheduling: Making Operational Decisions with a Strategic Perspective (Doctoral dissertation, University of Toronto).
[5] Baras, J. S., Dorsey, A. J., & Makowski, A. M. (1985). Two competing queues with linear costs and geometric service requirements: the μc-rule is often optimal. Advances in Applied Probability, 17(01), 186-209.
[6] Bengü, G., & Ortiz, J. C. (1994). Telecommunications systems maintenance. Computers & operations research, 21(3), 337-351.
[7] Bernier, V., & Frein, Y. (2004). Local scheduling problems submitted to global FIFO processing constraints. International journal of production research, 42(8), 1483-1503.
[8] Bicalho, L. H., dos Santos, A. G., & Arroyo, J. E. (2011, July). Metaheuristic for parallel machines scheduling with resource-assignable sequence dependent setup times. In Proceedings of the 13th annual conference on Genetic and evolutionary computation (pp. 449-456). ACM.
[9] Blackstone, J.H., Phillips, D.T., & Hogg, G.L. (1982). A State-of-the-Art Survey of Dispatching Rules for Manufacturing Job Shop Operations. International Journal of Production Research, Vol. 20, No. 1, PP.27-45.
[10] Borrero, J. S., & Akhavan-Tabatabaei, R. (2013). Time and inventory dependent optimal maintenance policies for single machine workstations: An MDP approach. European Journal of Operational Research, 228(3), 545-555.
[11] Bozorgi-Amiri, A., & Khorsi, M. (2015). A dynamic multi-objective location–routing model for relief logistic planning under uncertainty on demand, travel time, and cost parameters. The International Journal of Advanced Manufacturing Technology, 1-16.
[12] Chen, A., Guo, R. S., & Wu, G. S. (2000). Real-time equipment health evaluation and dynamic preventive maintenance. In Semiconductor Manufacturing, 2000. Proceedings of ISSM 2000. The Ninth International Symposium on (pp. 375-378). IEEE.
[13] Chen, A., & Wu, G. S. (2007). Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration. International Journal of Production Research, 45(15), 3351-3379.
[14] Chen, J. F. (2009). Scheduling on unrelated parallel machines with sequence-and machine-dependent setup times and due-date constraints. The International Journal of Advanced Manufacturing Technology, 44(11), 1204-1212.
[15] Chen, J. F. (2015). Unrelated parallel-machine scheduling to minimize total weighted completion time. Journal of Intelligent Manufacturing, 1099-1112.
[16] Dekker, R., & Dijkstra, M. (1992). Opportunity-based age replacement: exponentially distributed times between opportunities. Naval Research Logistics: an international journal, 175-190.
[17] Dekker, R., & Smeitink, E. (1991). Opportunity-based block replacement. European Journal of Operational Research, 53(1), 46-63.
[18] Dong, M., & He, D. (2007). Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis. European Journal of Operational Research, 178(3), 858-878.
[19] Finch, B. J., & Gilbert, J. P. (1986). Developing maintenance craft labor efficiency through an integrated planning and control system: a prescriptive model. Journal of Operations Management, 6(3-4), 449-459.
[20] Guo, R. S., Chen, A., Tseng, C. L., Fong, I. K., Yang, A., Lee, C. L., ... & Chang, S. G. (1998, June). A real-time equipment monitoring and fault detection system. In Semiconductor Manufacturing Technology Workshop, 1998 (pp. 111-121). IEEE.
[21] Hallah, R. M. & Bulfin R. L. (2005). Minimizing the Weighted Number of Tardy Jobs on Parallel Processors. European Journal of Operational Research, vol.160, No.2, pp.471-484.
[22] Hassan Abdel-Jabbar, M. A., Kacem, I., & Martin, S. (2014). Unrelated parallel machines with precedence constraints: application to cloud computing. In Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference on (pp. 438-442). IEEE.
[23] Hsu, C. J., Kuo, W. H., & Yang, D. L. (2011). Unrelated parallel machine scheduling with past-sequence-dependent setup time and learning effects. Applied Mathematical Modelling, 35(3), 1492-1496.
[24] Hulshof, P. J., Mes, M. R., Boucherie, R. J., & Hans, E. W. (2015). Patient admission planning using Approximate Dynamic Programming. Flexible Services and Manufacturing Journal, 1-32.
[25] Inna, G. & B.Jeffrey (2011). Minimization of earliness, tardiness and due date penalties on uniform parallel machines with identical jobs. Computers & Operations Research, vol. 39, pp. 1919-1926
[26] Iravani, S. M., & Kolfal, B. (2005). When does the cμ rule apply to finite-population queueing systems?. Operations Research Letters, 33(3), 301-304.
[27] Kampke, E. H., Arroyo, J. E. C., & Santos, A. G. D. (2009, December). Reactive GRASP with path relinking for solving parallel machines scheduling problem with resource-assignable sequence dependent setup times. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on (pp. 924-929). IEEE.
[28] Kampke, E. H., Arroyo, J. E. C., & Santos, A. G. (2010). Iterated local search with path relinking for solving parallel machines scheduling problem with resource-assignable sequence dependent setup times. In Evolutionary Computation in Combinatorial Optimization (pp. 107-118).
[29] Kaufman, D. L., & Lewis, M. E. (2007). Machine maintenance with workload considerations. Naval Research Logistics (NRL), 54(7), 750-766.
[30] Kayvanfar, V., & Teymourian, E. (2014). Hybrid intelligent water drops algorithm to unrelated parallel machines scheduling problem: a just-in-time approach. International Journal of Production Research, 52(19), 5857-5879.
[31] Kazaz, B., & Sloan, T. W. (2008). Production policies under deteriorating process conditions. IIE Transactions, 40(3), 187-205.
[32] Kazaz, B., & Sloan, T. W. (2013). The impact of process deterioration on production and maintenance policies. European Journal of Operational Research, 227(1), 88-100.
[33] Kim, D-W., K-H. Kim, W. Jang, & F-F. Chen (2002). Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics And Computer-Integrated Manufacturing, vol.18, pp.223-231
[34] Kim, D. W., Na, D. G., Jang, W., & Chen, F. F. (2006). Simulated annealing and genetic algorithm for unrelated parallel machine scheduling considering set-up times. International journal of computer applications in technology, 26(1-2), 28-36.
[35] Lee, S., & Ni, J. (2013). Joint decision making for maintenance and production scheduling of production systems. The International Journal of Advanced Manufacturing Technology, 66(5-8), 1135-1146.
[36] Liaw, C-F., Y-K. Lin, C-Y. Cheng, & M. Chen (2003). Scheduling unrelated parallel machines to minimize total weighted tardiness. Computers & Operations Research, vol.30, no.12, pp.1777-1789.
[37] Lin, C-H. & C-J. Liao (2008). Makespan minimization for multiple uniform machines. Computers and Industrial Engineering, vol.54, pp.709-720
[38] Lin, S. W., & Ying, K. C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines with machine-dependent and job sequence-dependent setup times. Computers & Operations Research, 51, 172-181.
[39] Park, J., & Reveliotis, S. A. (2001). Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings.Automatic Control, IEEE Transactions on, 46(10), 1572-1583.
[40] Rezaeian, J. (2016). A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the total machine load on unrelated parallel machines. Applied Soft Computing.
[41] Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5-8), 777-794.
[42] Saitou, K., Malpathak, S., & Qvam, H. (2002). Robust design of flexible manufacturing systems using, colored Petri net and genetic algorithm. Journal of intelligent manufacturing, 13(5), 339-351.
[43] Samhouri, M. S. (2009). An intelligent opportunistic maintenance (OM) system: a genetic algorithm approach. In Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference (pp. 60-65). IEEE.
[44] Singh, M. R., Song, J. S., Yano, C. A., & Moreno-Beltran, A. (2004). Production and repair decisions with time consuming repair and a deadline. Working paper, Columbia University, New York.
[45] Van der Duyn Schouten, F. A., & Vanneste, S. G. (1995). Maintenance optimization of a production system with buffer capacity. European journal of operational research, 82(2), 323-338.
[46] Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on semiconductor manufacturing, 1(3), 115-130.
[47] Weinstein, L., & Chung, C. H. (1999). Integrating maintenance and production decisions in a hierarchical production planning environment. Computers & operations research, 26(10), 1059-1074.
[48] Wijnmalen, D. J., & Hontelez, J. A. (1997). Coordinated condition-based repair strategies for components of a multi-component maintenance system with discounts. European Journal of Operational Research, 98(1), 52-63.
[49] Yan, S., Yang, T. H., & Chen, H. H. (2004). Airline short-term maintenance manpower supply planning. Transportation Research Part A: Policy and Practice, 38(9), 615-642.
[50] Yao, X., Xie, X., Fu, M. C., & Marcus, S. I. (2005). Optimal joint preventive maintenance and production policies. Naval Research Logistics (NRL), 668-681.
[51] Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., & Fowler, J. W. (2002). Scheduling of unrelated parallel machines: an application to PWB manufacturing. IIE transactions, 34(11), 921-931.
[52] Zhang, X., & Zeng, J. (2015). Deterioration state space partitioning method for opportunistic maintenance modelling of identical multi-unit systems. International Journal of Production Research, 53(7), 2100-2118.
[53] Zhou, B., Yu, J., Shao, J., & Trentesaux, D. (2015). Bottleneck-based opportunistic maintenance model for series production systems. Journal of Quality in Maintenance Engineering.
[54] Zhou, X., Xi, L., & Lee, J. (2009). Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programming. International Journal of Production Economics, 118(2), 361-366.
[55] Z.-J Zhang, & J. Daigle.(2012) Analysis of job assignment with batch arrivals among heterogeneous servers. European Journal of Operational Research 217.1: 149-161.
[56] 李旺蒼、劉澄昇、徐雅蕙、張瑞芬、林彥伯. (2006). 應用網路維護系統於備品物流之先導性研究-以半導體產業為例. 機械工業雜誌, 285期.
[57] 張佳蓉. (2007). 半導體製程與設備之健康指標分析. 清華大學工業工程與工程管理學系學位論文, 1-32.
[58] 陳妍言. (2007). 機台重要指標之探討. 清華大學統計學研究所學位論文, 1-36.
[59] 陳渝婷. (2016). 具等候時間限制之下游多產品機台生產系統控制. 臺灣大學工業工程學研究所學位論文, 1-160.
[60] 楊芷晴. (2010). 設備動態配置與預防保養之整合研究. 臺灣大學工業工程學研究所學位論文, 1-110.
[61] 潘柏辰. (2014). 具連續作業等候時間限制之平行多機生產系統控制. 臺灣大學工業工程學研究所學位論文, 1-71.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20756-
dc.description.abstract本研究利用機台健康資訊,發展即時動態派工與預防保養策略,其能有效應用於小規模非等效平行機台製造系統。有許多原因會造成機台的健康程度不同,其一正是因為機台的老舊程度,或磨耗程度,造成各機台對同種產品的處理速度不一致,故本研究將因機台健康程度不同而有不同加工速率的狀況定義為一非等效平行機台問題。在此生產環境下,若沒有考量到機台健康資訊並搭配妥善的派工策略,將造成產能不平衡、生產週期時間過長,進而導致系統生產成本增加,這些都是進行動態派工的動機,更能應用於預防保養策略。
本研究利用動態規劃(dynamic programming)建立多產品多機台的動態派工與預防保養策略模型(Dynamic Dispatching with Preventive Maintenance Model,DDPM Model),目標為最小化等候成本,並針對小規模兩產品兩機台系統撰寫程式求解,再進行數值範例分析及模擬驗證。最後以離散事件模擬(discrete event simulation)對小規模兩產品兩機台系統DDPM模型進行驗證,與其他傳統派工方法比較,結果顯示DDPM能有效提升系統平均製造率且降低總等候成本。
zh_TW
dc.description.abstractThis study uses machine health information to develop an efficient dynamic dispatching and preventive maintenance policy for inequivalent parallel machines. Inequivalent parallel machines have similar function and can process the same group of products, but the production rates could be different. In many industries, the difference of production rates between inequivalent machines is caused by deterioration of machines over time. When production rates are different among inequivalent machines between different products, a proper dispatching strategy is critical for reducing production cycle. In addition, this study also integrates preventive maintenance policy into dynamic dispatching model so as to save more waiting cost.
The Dynamic Dispatching with Preventive Maintenance Model (DDPM Model) is developed and formulated with stochastic dynamic programming. The model objective is to minimize the total waiting cost. Finally, the discrete event simulation is used to verify the DDPM model of two-product and two-machine system. Compared with several traditional dispatching rules, DDPM can effectively increase average production rate and also decrease total waiting cost.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:01:58Z (GMT). No. of bitstreams: 1
ntu-106-R04546003-1.pdf: 3717187 bytes, checksum: 2414601d364857ce30230b1b28307d21 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
目 錄 IV
圖 目 錄 VI
表 目 錄 VIII
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 6
1.3 研究方法 8
1.4 研究流程 9
第2章 文獻回顧 11
2.1 非等效平行機台之生產管理 11
2.2 動態規劃求解資源分配方法 13
2.3 機台預防保養相關文獻 14
2.3.1 機會保養 14
2.3.2 預防保養為一生產排程項目 15
2.3.3 整合生產規劃與預防保養 15
2.4 機台健康指標相關文獻 17
第3章 問題描述與模型建構 18
3.1 研究問題描述 18
3.2 研究問題假設與模型符號定義 19
3.2.1 基本假設 19
3.2.2 符號定義 20
3.3 多產品多機台動態派工與預防保養模型(DDPM) 22
3.4 兩產品兩機台動態派工與預防保養模型(DDPM) 26
3.5 考慮設置率下兩產品一機台換線決策模型(CPSR) 29
第4章 數值範例與模擬驗證 33
4.1 求解程式演算邏輯 33
4.2 數值範例 34
4.2.1 兩產品兩機台動態派工與預防保養模型 34
4.2.2 考慮設置率下兩產品一機台換線決策模型 42
4.3 模擬方法架構 46
4.4 實驗設計 50
4.5 實驗結果與分析─指數分配製造時間 53
4.5.1 實驗結果 53
4.5.2 實驗分析 59
4.6 實驗結果與分析─均勻分配製造時間 66
4.6.1 實驗結果 66
4.6.2 實驗分析 72
4.7 實驗結果與分析─常數製造時間 79
4.7.1 實驗結果 79
4.7.2 實驗分析 85
4.8 實驗結果與分析─顯著因子實驗 92
4.8.1 實驗結果 93
4.8.2 實驗分析 96
第5章 結論與未來研究方向 97
5.1 結論 97
5.2 未來研究方向 97
參考文獻 98
附錄 105
dc.language.isozh-TW
dc.subject機台健康資訊zh_TW
dc.subject動態規劃zh_TW
dc.subject預防保養zh_TW
dc.subject動態派工zh_TW
dc.subject非等效平行機台zh_TW
dc.subjectMachine Health Informationen
dc.subjectDynamic Programmingen
dc.subjectPreventive Maintenanceen
dc.subjectDynamic Dispatchingen
dc.subjectInequivalent Parallel Machinesen
dc.title考量機台損耗之非等效動態生產系統派工與保養zh_TW
dc.titleDynamic Dispatching and Preventive Maintenance of Inequivalent Machines with Dispatching-dependent Deteriorationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃奎隆,藍俊宏,余承叡
dc.subject.keyword機台健康資訊,非等效平行機台,動態派工,預防保養,動態規劃,zh_TW
dc.subject.keywordMachine Health Information,Inequivalent Parallel Machines,Dynamic Dispatching,Preventive Maintenance,Dynamic Programming,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201700965
dc.rights.note未授權
dc.date.accepted2017-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved