請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20752完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈 | |
| dc.contributor.author | Wan-Ju Chen | en |
| dc.contributor.author | 陳婉茹 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:01:47Z | - |
| dc.date.copyright | 2017-07-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-21 | |
| dc.identifier.citation | Alders M., J. Bliek, K. vd Lip, R. vd Bogaard and M. Mannens. (2009). Determination of KCNQ1OT1 and H19 methylation levels in BWS and SRS patients using methylation-sensitive high-resolution melting analysis. Eur J Hum Genet. 17(4): 467-473.
Allen T. M. and P. R. Cullis. (2004). Drug delivery systems: entering the mainstream. Science. 303(5665): 1818-1822. Bhagwat R. and I. Vaidhya. (2013). Novel Drug Delivery Systems: An Overview. Int J Pharm Sci Res. 4(3): 970-982. Bielinska A., R. A. Shivdasani, L. Q. Zhang and G. J. Nabel. (1990). Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 250(4983): 997-1000. Bournazou E. and J. Bromberg. (2013). Targeting the tumor microenvironment: JAK-STAT3 signaling. JAK-STAT. 2(2): e23828. Burke J. R., M. A. Pattoli, K. R. Gregor, P. J. Brassil, J. F. MacMaster, K. W. McIntyre, X. Yang, V. S. Iotzova, W. Clarke, J. Strnad, Y. Qiu and F. C. Zusi. (2003). BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J Biol Chem. 278(3): 1450-1456. Butturini E., G. Gotte, D. Dell'Orco, G. Chiavegato, V. Marino, D. Canetti, F. Cozzolino, M. Monti, P. Pucci and S. Mariotto. (2016). Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function. Biochem J. 473(19): 3205-3219. Chen-Park F. E., D. B. Huang, B. Noro, D. Thanos and G. Ghosh. (2002). The kappa B DNA sequence from the HIV long terminal repeat functions as an allosteric regulator of HIV transcription. J Biol Chem. 277(27): 24701-24708. Crinelli R., M. Bianchi, L. Gentilini and M. Magnani. (2002). Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res. 30(11): 2435-2443. De Stefano D., G. De Rosa, M. C. Maiuri, F. Ungaro, F. Quaglia, T. Iuvone, M. P. Cinelli, M. I. La Rotonda and R. Carnuccio. (2009). Oligonucleotide decoy to NF-κB slowly released from PLGA microspheres reduces chronic inflammation in rat. Pharmacological Research. 60(1): 33-40. Fang Y., H. Sun, J. Zhai, Y. Zhang, S. Yi, G. Hao and T. Wang. (2011). Antitumor Activity of NF-kB Decoy Oligodeoxynucleotides in a Prostate Cancer Cell Line. Asian Pacific J Cancer Prev. 12: 2721-2726. Giannoukakis N., C. A. Bonham, S. Qian, Z. Chen, L. Peng, J. Harnaha, W. Li, A. W. Thomson, J. J. Fung, P. D. Robbins and L. Lu. (2000). Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol Ther. 1(5 Pt 1): 430-437. Grivennikov S. I. and M. Karin. (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21(1): 11-19. Hagihara K., T. Nishikawa, Y. Sugamata, J. Song, T. Isobe, T. Taga and K. Yoshizaki. (2005). Essential role of STAT3 in cytokine-driven NF-kappaB-mediated serum amyloid A gene expression. Genes Cells. 10(11): 1051-1063. Hoesel B. and J. A. Schmid. (2013). The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 12: 86. Husby J., A. K. Todd, S. M. Haider, G. Zinzalla, D. E. Thurston and S. Neidle. (2012). Molecular dynamics studies of the STAT3 homodimer:DNA complex: relationships between STAT3 mutations and protein-DNA recognition. J Chem Inf Model. 52(5): 1179-1192. Jang K. J., A. P. Mehr, G. A. Hamilton, L. A. McPartlin, S. Chung, K. Y. Suh and D. E. Ingber. (2013). Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 5(9): 1119-1129. Juliano R. L. (2016). The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44(14): 6518-6548. Kagalkar A. A. and S. A. Nitave. (2013). Review: Approach on Novel Drug Delivery System. World J Pharm Sci. 2(5): 3449-3461. Khvorova A. and J. K. Watts. (2017). The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotech. 35(3): 238-248. Kimura M., M. Haisa, H. Uetsuka, M. Takaoka, T. Ohkawa, R. Kawashima, T. Yamatsuji, M. Gunduz, Y. Kaneda, N. Tanaka and Y. Naomoto. (2003). TNF combined with IFN-alpha accelerates NF-kappaB-mediated apoptosis through enhancement of Fas expression in colon cancer cells. Cell Death Differ. 10(6): 718-728. Klein J. D., D. Sano, M. Sen, J. N. Myers, J. R. Grandis and S. Kim. (2014). STAT3 oligonucleotide inhibits tumor angiogenesis in preclinical models of squamous cell carcinoma. PLoS One. 9(1): e81819. Kunigal S., S. S. Lakka, P. K. Sodadasu, N. Estes and J. S. Rao. (2009). Stat3-siRNA induces Fas-mediated apoptosis in vitro and in vivo in breast cancer. Int J Oncol. 34(5): 1209-1220. Lee H., A. Herrmann, J. H. Deng, M. Kujawski, G. Niu, Z. Li, S. Forman, R. Jove, D. M. Pardoll and H. Yu. (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 15(4): 283-293. Leong P. L., G. A. Andrews, D. E. Johnson, K. F. Dyer, S. Xi, J. C. Mai, P. D. Robbins, S. Gadiparthi, N. A. Burke, S. F. Watkins and J. R. Grandis. (2003). Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 100(7): 4138-4143. Li W. X. (2008). Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol. 18(11): 545-551. Lin Y. Z., S. Y. Yao, R. A. Veach, T. R. Torgerson and J. Hawiger. (1995). Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem. 270(24): 14255-14258. Miklossy G., T. S. Hilliard and J. Turkson. (2013). Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov. 12(8): 611-629. Mischiati C., M. Borgatti, N. Bianchi, C. Rutigliano, M. Tomassetti, G. Feriotto and R. Gambari. (1999). Interaction of the Human NF-κB p52 Transcription Factor with DNA-PNA Hybrids Mimicking the NF-κB Binding Sites of the Human Immunodeficiency Virus Type 1 Promoter. J Biol Chem. 274(46): 33114-33122. Morishita R., G. H. Gibbons, M. Horiuchi, K. E. Ellison, M. Nakama, L. Zhang, Y. Kaneda, T. Ogihara and V. J. Dzau. (1995). A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 92(13): 5855-5859. Olson H., G. Betton, D. Robinson, K. Thomas, A. Monro, G. Kolaja, P. Lilly, J. Sanders, G. Sipes, W. Bracken, M. Dorato, K. Van Deun, P. Smith, B. Berger and A. Heller. (2000). Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 32(1): 56-67. Paudel K. R., G. P. Rauniar, S. K. Bhattacharya and B. P. Das. (2008). Recent advancement in drug delivery system. Kathmandu Univ Med J (KUMJ). 6(2): 262-267. Sahi J., S. Grepper and C. Smith. (2010). Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug discovery. Curr Drug Discov Technol. 7(3): 188-198. Schindler C. and C. Plumlee. (2008). Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol. 19(4): 311-318. Schust J., B. Sperl, A. Hollis, T. U. Mayer and T. Berg. (2006). Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 13(11): 1235-1242. Scuto A., M. Kujawski, C. Kowolik, L. Krymskaya, L. Wang, L. M. Weiss, D. Digiusto, H. Yu, S. Forman and R. Jove. (2011). STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res. 71(9): 3182-3188. Sen M., S. M. Thomas, S. Kim, J. I. Yeh, R. L. Ferris, J. T. Johnson, U. Duvvuri, J. Lee, N. Sahu, S. Joyce, M. L. Freilino, H. Shi, C. Li, D. Ly, S. Rapireddy, J. P. Etter, P. K. Li, L. Wang, S. Chiosea, R. R. Seethala, W. E. Gooding, X. Chen, N. Kaminski, K. Pandit, D. E. Johnson and J. R. Grandis. (2012). First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov. 2(8): 694-705. Senftleben U., Y. Cao, G. Xiao, F. R. Greten, G. Krahn, G. Bonizzi, Y. Chen, Y. Hu, A. Fong, S. C. Sun and M. Karin. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 293(5534): 1495-1499. Souissi I., P. Ladam, J. A. Cognet, S. Le Coquil, N. Varin-Blank, F. Baran-Marszak, V. Metelev and R. Fagard. (2012). A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol Cancer. 11: 12. Souissi I., I. Najjar, L. Ah-Koon, P. O. Schischmanoff, D. Lesage, S. Le Coquil, C. Roger, I. Dusanter-Fourt, N. Varin-Blank, A. Cao, V. Metelev, F. Baran-Marszak and R. Fagard. (2011). A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-kappaB. BMC Cell Biol. 12: 14. Sreenivasan Y., A. Sarkar and S. K. Manna. (2003). Mechanism of cytosine arabinoside-mediated apoptosis: role of Rel A (p65) dephosphorylation. Oncogene. 22(28): 4356-4369. Tiong H. Y., P. Huang, S. Xiong, Y. Li, A. Vathsala and D. Zink. (2014). Drug-Induced Nephrotoxicity: Clinical Impact and Preclinical in Vitro Models. Mol Pharm. 11(7): 1933-1948. Tomita N., R. Morishita, H. Y. Lan, K. Yamamoto, M. Hashizume, M. Notake, K. Toyosawa, B. Fujitani, W. Mu, D. J. Nikolic-Paterson, R. C. Atkins, Y. Kaneda, J. Higaki and T. Ogihara. (2000). In vivo administration of a nuclear transcription factor-kappaB decoy suppresses experimental crescentic glomerulonephritis. J Am Soc Nephrol. 11(7): 1244-1252. Turkson J., S. Zhang, L. B. Mora, A. Burns, S. Sebti and R. Jove. (2005). A Novel Platinum Compound Inhibits Constitutive Stat3 Signaling and Induces Cell Cycle Arrest and Apoptosis of Malignant Cells. J Biol Chem. 280(38): 32979-32988. Urban M. B. and P. A. Baeuerle. (1990). The 65-kD subunit of NF-kappa B is a receptor for I kappa B and a modulator of DNA-binding specificity. Genes Dev. 4(11): 1975-1984. Vernetti L., A. Gough, N. Baetz, S. Blutt, J. R. Broughman, J. A. Brown, J. Foulke-Abel, N. Hasan, J. In, E. Kelly, O. Kovbasnjuk, J. Repper, N. Senutovitch, J. Stabb, C. Yeung, N. C. Zachos, M. Donowitz, M. Estes, J. Himmelfarb, G. Truskey, J. P. Wikswo and D. L. Taylor. (2017). Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. Scientific Reports. 7: 42296. Vossen R. H., E. Aten, A. Roos and J. T. den Dunnen. (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat. 30(6): 860-866. Wang S. J., Y. T. Hou and L. C. Chen. (2015). A selective decoy-doxorubicin complex for targeted co-delivery, STAT3 probing and synergistic anti-cancer effect. Chem Commun (Camb). 51(68): 13309-13312. Xiong A., Z. Yang, Y. Shen, J. Zhou and Q. Shen. (2014). Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers 6(2): 926-957. Yang J., X. Liao, M. K. Agarwal, L. Barnes, P. E. Auron and G. R. Stark. (2007). Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev. 21(11): 1396-1408. Yang K., C. Guo, J. L. Woodhead, R. L. St Claire, 3rd, P. B. Watkins, S. Q. Siler, B. A. Howell and K. L. Brouwer. (2016). Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci. 105(2): 443-459. Yoshida Y., A. Kumar, Y. Koyama, H. Peng, A. Arman, J. A. Boch and P. E. Auron. (2004). Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem. 279(3): 1768-1776. Zhang Q., D. M. Hossain, P. Duttagupta, D. Moreira, X. Zhao, H. Won, R. Buettner, S. Nechaev, M. Majka, B. Zhang, Q. Cai, P. Swiderski, Y. H. Kuo, S. Forman, G. Marcucci and M. Kortylewski. (2016). Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood. 127(13): 1687-1700. Zhang X., J. Zhang, L. Wang, H. Wei and Z. Tian. (2007). Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer. 7: 149. Zhang X., J. Zhang, L. Wang, H. Wei and Z. Tian. (2007). Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer. 7(1): 149. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20752 | - |
| dc.description.abstract | 臨床上已開發使用的癌症治療藥物,以化療藥物使用最為普遍,但是也帶給人體很大的副作用,因此現行藥物開發都希望能夠達到藥物使用量減少、副作用低、製造成本低的目標。近年來,標靶藥物開發盛行,圈套寡核苷酸此具選擇性的藥物,藉由模仿目標基因的序列,干擾轉錄因子結合上目標基因,進而阻止下游訊息的調控,抑制癌細胞生長。而在臨床上為了增加藥物的作用效率以及藥物在組織中的存在時機,在施予藥物時會利用載體攜帶至癌細胞附近累積。另外,除了載體能增加藥物在組織或體循環中的存在時間,也會改變藥物本身的結構。而在本研究將結合載體以及改良藥物結構的方式,來提升抑制癌細胞的效果。首先,會進行圈套寡核苷酸與載體Lipofectamine® 2000的最適化探討。然後將圈套寡核苷酸進行修飾,探討其在結構上和未修飾之圈套寡核苷酸的差異,以及修飾前後圈套寡核苷酸對癌細胞抑制效果是否有差異。最後也會將修飾與未修飾之圈套寡核苷酸於正常肝、腎細胞的是否有副作用。在圈套寡核苷酸與載體的轉染效率最適化實驗時,得知圈套寡核苷酸於6小時的時候,圈套寡核苷酸於細胞底層的累積是最大量的,而利用流式細胞儀時也量測出轉染效率於6小時之時間點達到90%。承接著上述的轉染條件,將修飾與未修飾之圈套寡核苷酸轉染於PC3前列腺癌細胞,修飾之圈套寡核苷酸於最高濃度下其細胞存活率為20%左右,抑制癌細胞能力高於未修飾的組別。測得修飾與未修飾之圈套寡核苷酸之抑制癌細胞的存活率後,將兩者於肝、腎細胞上測試其對於正常細胞的毒殺能力,結果顯示,兩者於肝細胞AML12只有超過300nM的時候才會有毒殺能力,相較於PC3癌細胞,圈套寡核苷酸可以說是幾乎不影響AML12細胞。然而,在腎293細胞測試時,卻發現圈套寡核苷酸的濃度和細胞的凋亡情形成正比,經過和文獻的比對之後,推測293細胞可能帶有腫瘤之特性所導致。 | zh_TW |
| dc.description.abstract | Chemotherapy drugs are common in clinical use, but they also come with a number of unwanted side effects. Nowadays, the research and development of drugs hope to minimizing the dosage, the side effects and the product cost. Over the past two decades, the concept of targeted therapy has developed, and decoy oligonucleotides, one of the targeted therapy drugs mimics the target gene sequence and interferes the transcription factors to bind to the corresponding target genes, thus prevents the regulation of downstream signaling and inhibits the proliferation of cancer cells. In consideration of enhancing the drug efficiency and its retention time in tissue, this drug will be translocated and accumulate to cancer cell by carriers. Additionally, the drug retention time can also prolong by adjusting the structure and the chemical characteristics of drug. In this study, we will combine the carrier and structure modification to improve the drug potency. First, we will discuss the maximal optimization of decoy oligonucleotide with Lipofectamine® 2000 carrier. Next, we take post-modified decoy oligonucleotide to compare with non-modified group on structure difference and their effect on cancer cell. Finally, to ensure if non-modified or post-modified decoy oligonucleotide have the side effects on human body, drugs will test on normal liver and kidney cell. During the optimization experiment, the transfection efficiency reach the maximal level at 6 hours after transfection. And next, modified and non-modified group were transfected in PC3 cancr cell line, the cell viability under maximal concentration of modified group was 20%, and it has better inhibition ability than non-modified group. Then, the side effects of these two groups on normal cells were test. The result shows that their toxicity on AML12 will only appear when the concentration is higher than 300nM, but the result was difference on 293 cell. The toxicity of decoy oligonucleotides on 293 had dose-dependent effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:01:47Z (GMT). No. of bitstreams: 1 ntu-106-R04631007-1.pdf: 4458459 bytes, checksum: 55936bdd37b03035f35274e105b0e8b6 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 圖表目錄 viii 第一章 緒論 1 1.1前言 1 1.2研究動機 3 1.3研究目的 4 第二章 文獻回顧 6 2.1 STAT3轉錄因子 6 2.1.1 STAT3轉錄因子 6 2.1.2 典型STAT3 pathway和非典型STAT3 pathway在轉錄的角色 7 2.2 NF-kB轉錄因子 11 2.2.1 NF-kB轉錄因子 11 2.2.1 NF-kB轉錄因子之抑制策略 12 2.3 STAT3與NF-kB轉錄因子之交互作用 13 2.3.1 STAT3與NF-kB轉錄因子在細胞中的合作 13 2.3 STAT3與NF-kB之圈套寡核苷酸 16 2.3.1 STAT3與NF-kB圈套寡核苷酸 16 2.3.2經修飾之圈套寡核苷酸 22 2.4藥物毒藥理與代謝測試 24 2.4.1 肝臟與腎臟之藥物毒理測試 24 第三章 材料與實驗方法 26 3.1.1實驗材料 26 3.1.2儀器 28 3.2 實驗步驟 29 3.2.1細胞培養 29 3.2.2圈套寡核苷酸在血清中的穩定性測試 29 3.2.3 DNA電泳 29 3.2.4流式細胞儀螢光分析 30 3.2.5 Annexin V/PI雙染法 30 3.2.6西方點墨法 30 3.2.7圈套寡核苷酸於胞內分佈(Subcellular distribution of oligonucleotides) 30 3.2.8免疫螢光染色(Immunocytochemistry) 31 3.2.9圓二色光譜分析(CD characterization) 31 3.2.10高分辨率熔解分析(HRM analysis) 31 3.2.11基因表現定量分析 32 3.2.12細胞存活率分析(MTT assay) 32 第四章 結果與討論 33 4.1圈套寡核苷酸轉染條件最適化 33 4.1.1 圈套寡核甘酸的沉降與轉染時間 33 4.1.2 雙圈套寡核甘酸的共轉染效率 37 4.1.3 雙圈套寡核甘酸在PC3細胞中的分佈情形 39 4.2 修飾後之圈套寡核苷酸的藥物作用效率與穩定性 41 4.2.1硫代磷酸酯修飾之圈套寡核苷酸的結構分析 41 4.2.2硫代磷酸酯修飾之圈套寡核苷酸對PC3的影響 45 4.2.3硫代磷酸酯修飾之圈套寡核苷酸對PC3的影響 49 4.3圈套寡核苷酸於正常細胞(肝、腎)的作用 51 4.3.1圈套寡核苷酸於肝、腎細胞的影響 51 4.3.2圈套寡核苷酸於肝、腎細胞的影響 54 4.3.3硫代磷酸酯修飾之圈套寡核苷酸對正常細胞的影響 55 4.4圈套寡核苷酸於癌細胞PC3 cell line的作用 58 4.4.1圈套寡核苷酸的癌細胞抑制效率 58 4.4.2抑制STAT3與NF-kB之inhibitor於癌細胞的抑制效率 60 4.4.3雙圈套寡核甘酸的抑制效率 62 4.4.4細胞中STAT3和NF-kB的核質表現量與分佈 64 第五章 結論 66 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | STAT3 | zh_TW |
| dc.subject | 人類胚胎腎細胞 | zh_TW |
| dc.subject | 硫代磷酸圈套寡核?酸 | zh_TW |
| dc.subject | 小鼠肝細胞 | zh_TW |
| dc.subject | 前列腺癌 | zh_TW |
| dc.subject | STAT3 | en |
| dc.subject | phosphorothioate decoy oligonucleotide | en |
| dc.subject | prostate cancer | en |
| dc.subject | AML12 | en |
| dc.subject | HEK293 | en |
| dc.title | 影響圈套寡核苷酸於細胞抑制效果之因子探討 | zh_TW |
| dc.title | A study of the factors that affect the cell inhibition efficacy for decoy oligonucleotides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐駿森,侯詠德,廖泰慶 | |
| dc.subject.keyword | 硫代磷酸圈套寡核?酸,前列腺癌,小鼠肝細胞,人類胚胎腎細胞,STAT3, | zh_TW |
| dc.subject.keyword | phosphorothioate decoy oligonucleotide,prostate cancer,AML12,HEK293,STAT3, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU201701813 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-07-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
