Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20738
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor徐駿森(Chun-Hua Hsu)
dc.contributor.authorChun-Jung Linen
dc.contributor.author林君蓉zh_TW
dc.date.accessioned2021-06-08T03:01:07Z-
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-24
dc.identifier.citationAdams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221.
Adiguzel, A., Nadaroglu, H., and Adiguzel, G. (2015). Purification and characterization of -mannanase from Bacillus pumilus (M27) and its applications in some fruit juices. J Food Sci Tech Mys 52, 5292-5298.
Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352-367.
Ardevol, A., and Rovira, C. (2015a). Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J Am Chem Soc 137, 7528-7547.
Ardevol, A., and Rovira, C. (2015b). Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J Am Chem Soc 137, 7528-7547.
Bissaro, B., Monsan, P., Faure, R., and O'Donohue, M.J. (2015a). Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 467, 17-35.
Bissaro, B., Monsan, P., Faure, R., and O'Donohue, M.J. (2015b). Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 467, 17-35.
Bourgault, R., Oakley, A.J., Bewley, J.D., and Wilce, M.C.J. (2005). Three-dimensional structure of (1,4)-beta-D-mannan mannanohydrolase from tomato fruit. Protein Sci 14, 1233-1241.
Caffall, K.H., and Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohyd Res 344, 1879-1900.
Chen, X., Cao, Y., Ding, Y., Lu, W., and Li, D. (2007). Cloning, functional expression and characterization of Aspergillus sulphureus beta-mannanase in Pichia pastoris. J Biotechnol 128, 452-461.
Couturier, M., Roussel, A., Rosengren, A., Leone, P., Stalbrand, H., and Berrin, J.G. (2013). Structural and biochemical analyses of glycoside hydrolase families 5 and 26 beta-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. J Biol Chem 288, 14624-14635.
Daskiran, M., Teeter, R.G., Fodge, D., and Hsiao, H.Y. (2004). An evaluation of endo-beta-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in beta-mannan content. Poult Sci 83, 662-668.
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, W465-469.
Dong, Y.H., Li, J.F., Hu, D., Yin, X., Wang, C.J., Tang, S.H., and Wu, M.C. (2016). Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii beta-mannanase, AuMan5A, to improve its enzymatic properties by rational design. Appl Microbiol Biotechnol 100, 3989-3998.
dos Santos, C.R., Paiva, J.H., Meza, A.N., Cota, J., Alvarez, T.M., Ruller, R., Prade, R.A., Squina, F.M., and Murakami, M.T. (2012). Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-beta-D-mannanase. J Struct Biol 177, 469-476.
Ducros, V.M., Zechel, D.L., Murshudov, G.N., Gilbert, H.J., Szabo, L., Stoll, D., Withers, S.G., and Davies, G.J. (2002). Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. Angew Chem Int Ed Engl 41, 2824-2827.
Duffaud, G.D., McCutchen, C.M., Leduc, P., Parker, K.N., and Kelly, R.M. (1997). Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microbiol 63, 169-177.
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132.
Finch-Savage, W.E., and Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytol 171, 501-523.
Goncalves, A.M., Silva, C.S., Madeira, T.I., Coelho, R., de Sanctis, D., San Romao, M.V., and Bento, I. (2012). Endo-beta-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity. Acta Crystallogr D Biol Crystallogr 68, 1468-1478.
Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280 ( Pt 2), 309-316.
Henrissat, B., and Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293 ( Pt 3), 781-788.
Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-549.
Hoshikawa, K., Endo, S., Mizuniwa, S., Makabe, S., Takahashi, H., and Nakamura, I. (2012). Transgenic tobacco plants expressing endo-beta-mannanase gene from deep-sea Bacillus sp JAMB-602 strain confer enhanced resistance against fungal pathogen (Fusarium oxysporum). Plant Biotechnol Rep 6, 243-250.
Huang, J.W., Chen, C.C., Huang, C.H., Huang, T.Y., Wu, T.H., Cheng, Y.S., Ko, T.P., Lin, C.Y., Liu, J.R., and Guo, R.T. (2014). Improving the specific activity of beta-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochim Biophys Acta 1844, 663-669.
Iglesias-Fernandez, R., Rodriguez-Gacio, M.C., Barrero-Sicilia, C., Carbonero, P., and Matilla, A. (2011). Three endo-beta-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta 233, 25-36.
Kolpak, F.J., and Blackwell, J. (1976). Determination of the structure of cellulose II. Macromolecules 9, 273-278.
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477-486.
Laskowski, R.A., and Swindells, M.B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51, 2778-2786.
Lassmann, T., Frings, O., and Sonnhammer, E.L. (2009). Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res 37, 858-865.
Lee, C.M., Lee, Y.S., Seo, S.H., Yoon, S.H., Kim, S.J., Hahn, B.S., Sim, J.S., and Koo, B.S. (2014). Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library. J Microbiol Biotechn 24, 1196-1206.
Li, J.F., Zhao, S.G., Tang, C.D., Wang, J.Q., and Wu, M.C. (2012). Cloning and functional expression of an acidophilic beta-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. J Agric Food Chem 60, 765-773.
Lin, J.Y., Pantalone, V.R., Li, G.L., and Chen, F. (2011). Molecular Cloning and Biochemical Characterization of an Endo-beta-mannanase Gene from Soybean for Soybean Meal Improvement. J Agr Food Chem 59, 4622-4628.
Linkies, A., and Leubner-Metzger, G. (2012). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31, 253-270.
McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.
Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem 31, 426-428.
Moreira, L.R., and Filho, E.X. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79, 165-178.
Nonogaki, H., Gee, O.H., and Bradford, K.J. (2000). A germination-specific endo-beta-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123, 1235-1246.
Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8, 785-786.
Puchart, V., Vrsanska, M., Svoboda, P., Pohl, J., Ogel, Z.B., and Biely, P. (2004). Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochim Biophys Acta 1674, 239-250.
Rayle, D.L., and Cleland, R.E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol 99, 1271-1274.
Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42, W320-324.
Rodriguez-Gacio, M.D.C., Iglesias-Fernandez, R., Carbonero, P., and Matilla, A.J. (2012). Softening-up mannan-rich cell walls. J Exp Bot 63, 3975-3988.
Rossmann, M.G. (1990). The molecular replacement method. Acta Crystallogr A 46 ( Pt 2), 73-82.
Rytioja, J., Hilden, K., Yuzon, J., Hatakka, A., de Vries, R.P., and Makela, M.R. (2014). Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes. Microbiol Mol Biol R 78, 614-649.
Sabini, E., Schubert, H., Murshudov, G., Wilson, K.S., Siika-Aho, M., and Penttila, M. (2000). The three-dimensional structure of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 5. Acta Crystallogr D Biol Crystallogr 56, 3-13.
Shastak, Y., Ader, P., Feuerstein, D., Ruehle, R., and Matuschek, M. (2015). beta-Mannan and mannanase in poultry nutrition. World Poultry Sci J 71, 161-173.
Tailford, L.E., Ducros, V.M., Flint, J.E., Roberts, S.M., Morland, C., Zechel, D.L., Smith, N., Bjornvad, M.E., Borchert, T.V., Wilson, K.S., et al. (2009). Understanding how diverse beta-mannanases recognize heterogeneous substrates. Biochemistry 48, 7009-7018.
van Zyl, W.H., Rose, S.H., Trollope, K., and Gorgens, J.F. (2010). Fungal beta-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45, 1203-1213.
Vincent, F., Gloster, T.M., Macdonald, J., Morland, C., Stick, R.V., Dias, F.M., Prates, J.A., Fontes, C.M., Gilbert, H.J., and Davies, G.J. (2004). Common inhibition of both beta-glucosidases and beta-mannosidases by isofagomine lactam reflects different conformational itineraries for pyranoside hydrolysis. Chembiochem 5, 1596-1599.
Vogel, J. (2008). Unique aspects of the grass cell wall. Curr Opin Plant Biol 11, 301-307.
von Freiesleben, P., Spodsberg, N., Blicher, T.H., Anderson, L., Jorgensen, H., Stalbrand, H., Meyer, A.S., and Krogh, K.B. (2016). An Aspergillus nidulans GH26 endo-beta-mannanase with a novel degradation pattern on highly substituted galactomannans. Enzyme Microb Technol 83, 68-77.
Wang, D., Kim do, H., Seo, N., Yun, E.J., An, H.J., Kim, J.H., and Kim, K.H. (2016). A Novel Glycoside Hydrolase Family 5 beta-1,3-1,6-Endoglucanase from Saccharophagus degradans 2-40T and Its Transglycosylase Activity. Appl Environ Microbiol 82, 4340-4349.
Wang, J., Zeng, D., Liu, G., Wang, S., and Yu, S. (2014a). Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei. J Ind Microbiol Biotechnol 41, 125-133.
Wang, Y., Azhar, S., Gandini, R., Divne, C., Ezcurra, I., and Aspeborg, H. (2015). Biochemical characterization of the novel endo-beta-mannanase AtMan5-2 from Arabidopsis thaliana. Plant Sci 241, 151-163.
Wang, Y., Vilaplana, F., Brumer, H., and Aspeborg, H. (2014b). Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana. Planta 239, 653-665.
Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D., and Hochstrasser, D.F. (1999). Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112, 531-552.
Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., Shi, P., Luo, H., and Yao, B. (2016). A Novel Glycoside Hydrolase Family 113 Endo-beta-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family. Appl Environ Microbiol 82, 2718-2727.
Xu, X., Zhang, Y., Meng, Q., Meng, K., Zhang, W., Zhou, X., Luo, H., Chen, R., Yang, P., and Yao, B. (2013). Overexpression of a fungal beta-mannanase from Bispora sp. MEY-1 in maize seeds and enzyme characterization. PLoS One 8, e56146.
Yamabhai, M., Sak-Ubol, S., Srila, W., and Haltrich, D. (2016). Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 36, 32-42.
Yan, D., Duermeyer, L., Leoveanu, C., and Nambara, E. (2014). The functions of the endosperm during seed germination. Plant Cell Physiol 55, 1521-1533.
Yeoman, C.J., Han, Y., Dodd, D., Schroeder, C.M., Mackie, R.I., and Cann, I.K. (2010). Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70, 1-55.
Zhou, P., Liu, Y., Yan, Q., Chen, Z., Qin, Z., and Jiang, Z. (2014). Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 beta-mannosidase. Acta Crystallogr D Biol Crystallogr 70, 2970-2982.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20738-
dc.description.abstract內切-1,4-β-甘露聚醣酶 (endo-1,4-β-mannanase, β-mannanase, EC. 3.2.1.78) 在植物發芽和生長調控上扮演重要的角色,此酵素主要功能為水解β-1,4甘露聚醣使植物細胞壁軟化,以利於種子胚軸之突出與胚乳的消耗,然而目前對於植物來源β-mannanase 之結構及功能研究甚少。而本論文選擇大豆之β-mannanase作為研究對象,原因除了大豆是全球重要經濟作物外,在食品、飼料和工業應用上亦有很大的潛力。經基因體探勘,大豆中有21個β-mannanase基因,其中GmMAN19-1於親緣關係樹上較有其獨特性,因此以此基因為首要目標。 即時PCR結果顯示GmMAN19-1 基因於發芽7天後之子葉組織中表現,而經純化後的GmMAN19-1重組蛋白為一嗜酸性酵素且在pH 4.6有最大活性,且對直鏈型多醣有較好之水解能力。為了獲得更詳細的資訊,我們利用蛋白質結晶學解出GmMAN19-1以及其與受質五醣之複合體結構,意外發現此複合體結構包含兩種五醣的結合模式,分別呈現出糖苷水解酶受質 (subsites:-3,-2,-1,+1,+2) 和轉糖酵素受質 (subsite:-5,-4,-3,-2,-1) 的結合狀態。此外,GmMAN19-1與其他真菌來源之β-mannanase的結構比較顯示,GmMAN19-1於結構上多出了兩個延伸的loop,造成了較狹窄的活性位裂口。以解出的複合體結構為基礎,為嘗試提高GmMAN19-1對支鏈性甘露聚醣的選擇性,進行循理設計將GmMAN19-1突變。在我們所構築的五個突變株中,以Q267W最具潛力,因其對於支鏈型甘露聚醣的關華豆膠相對於野生株有50% 的比活性提升,而Q267W突變株,還有Y264W突變株及其複合物等蛋白質結構,也被進行結構解析並探討。整體而言,我們的研究結果提供GmMAN19-1受質專一性與轉醣基能力的結構觀點,並顯示了植物型β-mannanase和真菌來源之β-mannanase於結構上的差異。且特別是,Q267W對於支鏈型受質的水解有相當的潛力,提供了未來對於GmMAN19-1進行酵素工程以及大豆分子育種的依據。zh_TW
dc.description.abstractEndo-1,4-β-mannanase (β-mannanase, EC. 3.2.1.78) is a hydrloase that catalyzes cleavage of β-1-4 bonds in the mannan polymer. This enzyme family is involved in soften of the mannan-rich cell walls and consumption of endosperm, which is benifical to radicle protrusion upon seed germination. However, there is limited information about the structural and functional relationship of plant-type β-mannanase. In this study, plant-type β-mannanases from soybean (Glycine max) were studied, since soybean is not only a globally important commercial crops, but also a potential material for use in food, feed or industrial applications. Using genome mining, we find out that there are 21 types of β-mannanase gene in the genome of soybean, and GmMAN19-1 was selected as primiary target due to its unique position on phylogentic tree. RT-PCR data showed GmMAN19-1 was expressed only in the cotyledons tissue after 7-day germination. Purified recombinant GmMAN19-1 was acidophilic with a pH optimum of 4.6, and exhibited a higher activity to linear polysaccharides. For detailed information, crystal sturctures of GmMAN19-1 in apo form and in complex with mannopentose were determined. Intriguingly, the complex structure existed two distinct binding modes of mannopentaose, presented as the substrates for glycohydrolase (subsides -3, -2, -1, +1, +2) and transglycohydrolase (subsides -5, -4, -3, -2, -1), respectively. In addition, structural comparison of GmMAN19-1 with other β-mannanases from fungus reveals that GmMAN19-1 has two extended loops, producing a narrower active site cleft. Based on the solved structure of GmMAN19-1/pentaose complex, rational design was conducted to engineer GmMAN19-1 in an attempt to alter the substrate selectivity toward branched mannans. Among the 5 mutants we constructed, the most promising Q267W showed a 50% increase in specific activity toward the branched-mannan guar gum by comparison with the wild-type enzyme. GmMAN19-1-Q267W, GmMAN19-1-Y264W and its complex were also structurally characterized. Taken together, our findings provide structural insights into the substrate specificity and transglycosylation activity of GmMAN19-1 and demonstrate the structural differences between plant-type and fungal β-mannanase. In particular, Q267W mutant shows potential to hydrolysis branched substrate, which providing a basis for further enzymatic engineering of GmMAN19-1 and molecular breeding of soybean.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:01:07Z (GMT). No. of bitstreams: 1
ntu-106-R04623011-1.pdf: 4102001 bytes, checksum: a9f5ae607b1edeec012569fe27738994 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents壹、前言 1
1.1 植物細胞壁 1
1.1.1 細胞壁組成成分 2
1.2甘露聚醣 4
1.2.1直鏈型甘露聚醣 (linear mannans) 5
1.2.2半乳甘露聚醣 (galactomannans) 5
1.2.3葡甘露聚醣 (glucomannans) 6
1.2.4半乳葡甘露聚醣 (galactoglucomannan) 7
1.3醣苷水解酶 (Glycoside hydrolase families, GH) 的定義與分類 7
1.4 β-mannanase (甘露聚醣酶) 8
1.4.1 β-mannanase於植物體之功能 9
1.4.2 β-mannanase來源與功能介紹 11
1.4.3目前β-mannanase之結構研究 13
1.4.4 β-mannanase 產業上的應用 14
1.5 研究目的 14
貳、材料與方法 15
2.1實驗材料 15
2.1.1.植物樣本來源 15
2.2實驗方法 15
2.2.1.大豆GmMAN19-1基因取得與表現測定 15
2.2.1.1大豆β-mannananse之基因體探勘 (genome mining) 與其親緣關係分析 15
2.2.1.2大豆 RNA 萃取與 cDNA 反轉錄 16
2.2.1.3 GmMAN19-1 和GmMAN11 之基因表現測定 17
2.2.2 GmMAN19-1和GmMAN11重組蛋白的製備 18
2.2.2.1目標基因放大與蛋白質表現載體之構築 18
2.2.2.2質體抽取與DNA定序比對 19
2.2.2.3蛋白質表現與純化 20
2.2.2.4 SDS-PAGE膠體電泳分析 21
2.2.2.5膠體過濾層析法 (Gel filtration chromatography) 22
2.2.2.6蛋白質濃縮 23
2.2.2.7蛋白質濃度測定 23
2.2.3大豆β-mannanase生化特性分析 23
2.2.3.1酵素活性試驗 23
2.2.3.1.1 β-mannanase之最適 pH 值與 pH 耐受性實驗 24
2.2.3.1.2 β-mannanase之最適溫度與溫度耐受性實驗 25
2.2.3.1.3 β-mannanase酵素動力學測定 25
2.2.3.2圓二色光譜 (Circular Dichroism, CD) 實驗 25
2.2.3.2.1熱變性曲線測定 26
2.2.3.2.2二級結構構型觀察 26
2.2.3.3示熱差掃描螢光法 (differential scanning fluorimetry) 蛋白質穩定性測試 27
2.2.3.4以薄層層析 (Thin layer chromatography, TLC) 檢測轉醣化活性 27
2.2.4 X-ray晶體繞射實驗法 28
2.2.4.1蛋白質結晶測試 29
2.2.4.2蛋白質晶體條件篩選 29
2.2.4.3蛋白質晶體形成條件微調 29
2.2.4.4 X-ray 晶體繞射數據收集及處理 30
2.2.4.5相位角決定方法與結構精修 31
2.2.4.6 GmMAN19-1晶體浸潤甘露五醣 31
2.2.4.7 Ramachandran Plot 32
2.2.5 物種間胺基酸序列與蛋白結構之比較 32
2.2.5.1 胺基酸序列比對 32
2.2.5.2 蛋白質結構比對 33
2.2.6 定點突變實驗 33
參、結果 34
3.1大豆β-mannanase基因體探勘與表現測定 34
3.2 GmMAN19-1與MBP-GmMAN11表現與純化 35
3.3生化特性分析 36
3.3.1 pH 對GmMAN19-1之影響 36
3.3.2 溫度對GmMAN19-1之影響 37
3.3.3 GmMAN19-1酵素動力學測定 37
3.4 GmMAN19-1的結構鑑定 38
3.4.1 GmMAN19-1 蛋白質晶體培養 38
3.4.2 以甘露五醣 (M5) 浸潤 GmMAN19-1 晶體 39
3.4.3 GmMAN19-1 X-ray 繞射數據分析與單位晶格判斷 39
3.4.4 GmMAN19-1/M5 X-ray繞射數據分析與單位晶格判斷 40
3.4.5 GmMAN19-1與GmMAN19-1/M5蛋白質晶體結構建立 40
3.4.6 GmMAN19-1 蛋白質構型 41
3.4.7 GmMAN19-1與M5之結合模式 41
3.4.8 GmMAN19-1的受質辨認機制 42
3.4.9支鏈取代影響活性原因 43
3.5 GmMAN19-1與其他β-mannanase酵素構型之比較 43
3.5.1 GmMAN19-1和 structural relatives 之整體比較 43
3.5.2 GmMAN19-1和結構相似之β-mannanase於正負結合位的差異 44
3.6定點突變之選擇與考量 45
3.6.1突變株之蛋白表現與純化 46
3.6.2各突變株之水解能力分析 46
3.6.3突變株熱變性曲線結果 47
3.6.4以示熱差掃描螢光法測定WT與突變株之熱穩定性 47
3.6.5突變株之酵素結構鑑定 48
3.6.5.1突變株GmMAN19-1-Q267W、GmMAN19-1-Y264W和GmMAN19-1-E186A蛋白質晶體培養 48
3.6.5.2以甘露五醣 (M5) 浸潤GmMAN19-1之突變株晶體 48
3.6.5.3突變株蛋白晶體繞射數據分析與單位晶格判斷 48
3.6.5.4突變株蛋白質晶體結構建立 49
3.6.5.5突變株與WT之結構差異 50
肆、討論 51
4.1 GmMAN19-1於植物體內的功能 51
4.2 GmMAN19-1與其他已知結構的比較 52
4.2.1 GmMAN19-1受質複合體結果突顯負結合位Y41、Y77和F354之特殊處 52
4.2.2 GmMAN19-1和真菌來源β-mannanase活性差異探討 53
4.2.3 GmMAN19-1之受質特異性與催化機制推測 54
4.3突變株與WT的比較 55
4.3.1GmMAN19-1-Q267W對水解作用和轉醣基化能力之影響 55
4.3.2 GmMAN19-1-Y264之高度保留性原因 56
4.4 突變株與WT的熱穩定性差異 57
4.4.1 以CD測定之結果探討 57
4.4.2示熱差掃描螢光法蛋白質穩定性測試 57
伍、結論 58
陸、圖表 59
柒、參考文獻 108
捌、附錄 114
dc.language.isozh-TW
dc.subject轉醣基化zh_TW
dc.subject內切甘露聚醣?zh_TW
dc.subject大豆zh_TW
dc.subject酵素學zh_TW
dc.subject蛋白質結晶學zh_TW
dc.subjectprotein crystalizationen
dc.subjecttransglycosylationen
dc.subjectβ-mannanaseen
dc.subjectsoybeanen
dc.subjectenzymologyen
dc.title"大豆內切-1,4-β-甘露聚醣酶之受質專一性與
轉醣基能力的結構觀點與探討"
zh_TW
dc.titleStructural insights into the substrate specificity and transglycosylation activity of an endo-1,4-β-mannanase from soybean (Glycine max)en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹迺立(Nei-Li Chan),方翠筠(Tsuei-Yun Fang)
dc.subject.keyword內切甘露聚醣?,大豆,酵素學,蛋白質結晶學,轉醣基化,zh_TW
dc.subject.keywordβ-mannanase,soybean,enzymology,protein crystalization,transglycosylation,en
dc.relation.page124
dc.identifier.doi10.6342/NTU201701843
dc.rights.note未授權
dc.date.accepted2017-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
Appears in Collections:農業化學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
4.01 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved