Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張倉榮
dc.contributor.authorChun-Lung Chenen
dc.contributor.author陳俊龍zh_TW
dc.date.accessioned2021-06-08T02:59:37Z-
dc.date.copyright2017-08-04
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation1. 王嘉和,2008,「氣候變遷與地層下陷對台灣西南沿海地區淹水之衝擊評估」,國立台灣大學生物系統環境工程學系碩士論文。
2. 史嘉瀚,2011,「風機發電量推估之不確定性分析-以中屯風力發電廠為例」,國立台灣大學生物系統環境工程學系碩士論文。
3. 朱佳仁,2006,「風工程概論」,科技圖書。
4. 杜逸龍,2009,「風力發電機發電量之推估」,國立台灣大學生物系統環境工程學系博士論文。
5. 張永源,2014,「2014年全球風力發電市場發展趨勢與展望」,中華技術。
6. 張倉榮、杜逸龍、蔡志威,2005,「台灣地區利用風力潛能抽取地下水之可行性評估」,2005年農業工程研討會論文集。
7. 張倉榮、杜逸龍、蔡志威,2006,「農田水利會灌區風力潛勢分析及其在枯水期進行地下水抽取以輔助水資源調配之評估(一)」,財團法人中正農業科技社會公益基金會九十四年農業科技研究計畫執行成果報告。
8. 張倉榮、謝怡芳、許華倚,2003,「台灣地區風能密度與適當風力機選擇之先期評估」,中國農業工程學報。
9. 張筑程,2013,「鯉魚潭水庫水質因素分析之研究」,私立逢甲大學水利工程與資源保育學系碩士論文。
10. 莊月璇,2001,「台灣地區風速機率分佈之研究」,國立中央大學土木工程研究所碩士論文。
11. 許永佳,2002,「水壩溢流之風險分析―以翡翠水庫為例」,國立台灣大學土木工程研究所碩士論文。
12. 許浩銘,2013,「都市淹水模擬不確定性評估與機率式淹水地圖研析」,國立台灣大學生物環境系統工程學系碩士論文。
13. 陳怡青、陳俊宏,2006,「探討於生態風險評估之不確定性」,科學與工程技術期刊。
14. 陳仲誼,2015,「應用概似不確定性估計法於風機發電量之推估」,國立台灣大學生物環境系統工程學系碩士論文。
15. 陳俊龍,2009,「氣候變遷對台灣地區風能之影響評估」,國立台灣大學生物環境系統工程學系碩士論文。
16. 陳俊龍、張倉榮,2016,「氣候變遷下台灣風速與風力發電之評估」,農工學報第62卷第4期。
17. 童慶斌,2013,「水資源領域因應氣候變遷不確定性之決策機制研究」,經濟部水利署水利規劃試驗所。
18. 葉弘德,2012,「氣候變遷對台灣西部離岸風能潛勢與發電量之影響評估」,國立台灣大學生物環境系統工程學系碩士論文。
19. 廖倫偉,2011,「應用概似不確定性估計於溼地參數之不確定性分析」,國立台灣大學土木工程研究所碩士論文。
20. 賴彥維,2009,「都市淹水潛勢圖之研析」,國立台灣大學生物環境系統工程學系碩士論文。
21. 羅時麒,2005,「以系統性機率模式鑑定量化與整合生命週期評估之不確定性」,台灣大學環境工程學研究所博士論文。
22. Al-Abbadi, N. M. (2005). Wind energy resource assessment for five locations in Saudi Arabia. Renewable Energy. 30: 1489-1499.
23. Aronica, G., Bates, P. D., Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes. 16: 2001-2016.
24. Asefa, T. (2009). Ensemble streamflow forecast: a GLUE-based neural network approach. Journal of the American Water Resources Association. 45: 1155-1163.
25. Bates, P. D., Horritt, M. S., Aronica, G., Beven, K. (2004). Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrological Processes. 18: 3347-3370.
26. Beven, K., Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological processes. 6: 279-298.
27. Beven, K., Jim, F. (2000). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of hydrology. 249(1-4): 11-29.
28. BP (2002), World Nuclear Association.
29. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E. (2001). Wind energy handbook. West Sussex, UK: John Wiley and Sons.
30. Celik, A. N. (2002). Energy output estimation for small-scale wind power generators using Weibull- representative wind data. Journal of wind Engineering and Industrial Aerodynamics. 91: 693-707.
31. Chang, T. J., Chen, C. L., Tu, Y. L., Yeh, H. T., Wu, Y. T. (2015). Evaluation of the climate change impact on wind resources in Taiwan Strait. Energy Conversion and Management. 95: 435–445.
32. Chang, T. J., Tu, Y. L. (2007). Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: a case study of Taiwan. Renewable Energy. 32: 1999-2010.
33. Chang, T. J., Wu, Y. T., Hsu, H. Y., Chu, C. R., Liao, C. M. (2003). Assessment of wind characteristics and wind turbine characteristics in Taiwan. Renewable Energy. 28: 851-71.
34. David, W. D., Raymond, P. C., Peter, G. M. (1992). Development of Bayesian Monte Carlo techniques for water quality model uncertainty. Ecological Modelling, 62, 149-162.
35. Dean, S., Freer, J., Beven, K. (2009). Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment. 23(7): 991-1010.
36. Gabriele, F. (2008). Uncertainty in urban stormwater quality modelling: the effect of acceptability threshold in the GLUE methodology. Water research. 42(8-9): 2061-2072.
37. Jamil, M., Parsa, S., Majidi, M. (1995). Wind power statistics and an evaluation of wind energy density. Renewable Energy. 6(5): 623-628.
38. Jung, S., Vanli, O. A., Kwon, S. D. (2013). Wind energy potential assessment considering the uncertainties due to limited data. Applied energy. 102: 1492-1503.
39. Kwon, S. D. (2010). Uncertainty analysis of wind energy potential assessment. Applied Energy. 87: 856-865.
40. Lun, I. Y. F., Lam, J. C. (2000). A study of Weibull parameters using long-term wind observations. Renewable Energy. 20: 145-153.
41. Mathew, S., Pandey, K. P., Kumar, A. (2002). Analysis of wind regimes for energy estimation. Renewable Energy. 25: 381-399.
42. McKay, M. D. (1988). Sensitivity and uncertainty analysis using a statistical sample of input values. Uncertainty Analysis: 145-186.
43. Morgan, E. C., Matthew, L., Richard, M. V., Laurie, G. B. (2011). Probability distributions for offshore wind speeds. Energy Conversion and Management. 52: 15-26.
44. Nash, J. E., Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology. 10(3): 282-290.
45. Patel, M. R. (1999). Wind and solar power systems. CRC Press, Florida, USA.
46. Pryor, S. C., Barthelmie, R. J. (2014). Hybrid downscaling of wind climates over the eastern USA. Environmental Research Letters. 9: 024013.
47. Pryor, S. C., Barthelmie, R. J., Kjellstrom, E. (2005). Potential climate change impact on wind energy resources in northern Europe: analyses using a redional climate model. Climate Dynamics. 25: 815-835.
48. Pryor, S. C., Schoof, J. T., Barthelmie, R. J. (2005). Climate change impacts on wind speeds and wind energy density in northern Europe: empirical downscaling of mutiple AOGCMs. Climate Research. 29: 183-198.
49. Pryor, S. C., Schoof, J. T., Barthelmie, R. J. (2005). Empirical downscaling of wind speed probability distributions. Journal of Geophysical Research. 110: D19109.
50. Sailor, D. J., Hu, T., Li, X., Rosen, J. N. (2000). A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change. Renewable Energy. 19: 359-378.
51. Sailor, D. J., Michael, S., Melissa, H. (2008). Climate change implications for wind power resources in the Northwest United States. Renewable Energy. 33: 2393-2406.
52. Stevens, M. J. M., Smulders, P. T. (1979). The estimation of parameters of the Weibull wind speed distribution for wind energy utilization purposes, Wind Engineering. 3(2), 132-145.
53. Tu, Y. L., Chang, T. J., Hsieh, C. I., Shih, J. Y. (2010). Artificial neural networks in the estimation of monthly capacity factors of WECS in Taiwan. Energy Conversion and Management. 51: 2938-2946.
54. Tu, Y. L., Chang, T. J., Chen, C. L., Chang, Y. J. (2012). Estimation of Monthly Wind Power Output of WECS with Limited Record Period Using Artificial Neural Networks. Energy Conversion and Management. 59: 114-121.
55. Viola, F., Noto, L. V. (2009). Daily streamflow prediction with uncertainty in ephemeral catchments using the GLUE methodology. Physics and Chemistry of the Earth. 34(10-12): 701-706.
56. Walker, W., Harremoës, P., Rotmans, J., Van der Sluijs, J., Van Asselt, M., Janssen, P., Krayer von, M. (2003). Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integrated Assessment. 4(1): 5-17.
57. Wright, A. K., Wood, D. H. (2004). The starting and low wind behavior of a small horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics. 92: 1265-1279.
58. Zimmermann, H. J. (2000). An application-oriented view of modeling uncertainty. European Journal of Operational Research. 122(2): 190-198.
59. 4C offshore, 10 Years of Wind Speed Rankings. http://www.4coffshore.com/windfarms/windspeeds.aspx
60. IPCC - Intergovernmental Panel on Climate Change. http://www.ipcc.ch
61. IPCC Data Distribution Centre. http://www.ipcc-data.org
62. Wind energy database. http://www.thewindpower.net
63. 臺灣氣候變遷推估與資訊平台。 https://tccip.ncdr.nat.gov.tw/v2/index.aspx
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20706-
dc.description.abstract本研究使用概似不確定性估計法(Generalized Likelihood Uncertainty Estimation, GLUE)配合中屯風力發電站即麥寮風力發電站資料進行日發電量不確定性以及月發電量不確定性之評估,並使用KS測試(Kolmogorov–Smirnov test)驗證其結果。在日發電量之不確定性方面,以此模式評估約有38%有過α=0.05之檢定,約56%有過α=0.01之檢定。在月發電量之不確定性部分,有通過α=0.05之檢定比例超過是90%,不同地點以相對誤差作為似然函數(likelihood function)通過α=0.05之檢定比例為58.33%,以NS效率係數(Nash-Sutcliffe efficiency coefficient) 作為似然函數則為83.33%。氣候變遷對東吉島之風力發電造成的影響會隨著氣候變遷的影響程度變嚴重,低發電量部分出現比現況更低發電量之機會提高,使得高發電量月份的不確定性提高。zh_TW
dc.description.abstractThis study uses Generalized Likelihood Uncertainty Estimation (GLUE) to evaluate the wind power uncertainty on daily and monthly periods, and uses the Kolmogorov–Smirnov test (KS test) to verify the results. The test shows that about 38% data sets pass the KS test on daily uncertainty at α = 0.05, and about 55% at α = 0.01. In the case of monthly uncertainty, it is more than 90% data sets pass the KS test at α = 0.05. It is 58.33% passing the KS test at α = 0.05 by using the relative error as the likelihood function at different site. In contrast, it would be 83.33% by using the Nash-Sutcliffe efficiency coefficient as the likelihood function. Finally, this study uses GLUE to evaluate the uncertainty of the impact of climate change on wind power in Tungchitao. The results show that the lower the wind power tends to be, the higher the probability of incidence of low wind power impacted by climate change will be.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:59:37Z (GMT). No. of bitstreams: 1
ntu-106-D98622004-1.pdf: 2251976 bytes, checksum: 1f4e074f9a92f874f44db796c6321c06 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
ABSTRACT II
目錄 III
表目錄 V
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 9
第二章 基礎理論 11
2.1 韋伯機率函數 11
2.2 發電量評估模式 12
2.3氣候變遷模式 14
2.4降尺度模式 16
第三章 不確定性分析方法 19
3.1風力發電之不確定因子 19
3.2 研究區域以及資料 21
3.3 不確定性評估模式 23
3.4 驗證方式 27
第四章 結果與討論 33
4.1日發電量之不確定性評估 33
4.2月發電量之不確定性評估 38
4.3氣候變遷之不確定性評估 40
第五章 結論及建議 67
5.1 結論 67
5.2 建議 68
參考文獻 70
簡歷與著作 77
附錄A 降尺度係數表 78
dc.language.isozh-TW
dc.subject概似不確定性估計法zh_TW
dc.subject不確定性zh_TW
dc.subject風力發電量zh_TW
dc.subject氣候變遷zh_TW
dc.subjectGeneralized Likelihood Uncertainty Estimationen
dc.subjectUncertaintyen
dc.subjectClimate Changeen
dc.subjectWind Poweren
dc.title以概似不確定性估計法評估氣候變遷對台灣風能之影響zh_TW
dc.titleEvaluation of Impact of Climate Change on Wind Power in Taiwan by the Generalized Likelihood Uncertainty Estimation Methoden
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭克聲,盧孟明,朱佳仁,吳毓庭
dc.subject.keyword不確定性,風力發電量,概似不確定性估計法,氣候變遷,zh_TW
dc.subject.keywordUncertainty,Wind Power,Generalized Likelihood Uncertainty Estimation,Climate Change,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201702135
dc.rights.note未授權
dc.date.accepted2017-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved