Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorShuai Chenen
dc.contributor.author陳帥zh_TW
dc.date.accessioned2021-06-08T02:59:17Z-
dc.date.copyright2017-07-31
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[2] D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, “Three-dimensional endomicroscophy using optical coherence tomography,” Nature Photonics 1, 709-716 (2007).
[3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
[4] B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “High-speed optical frequency-domain imaging,” Opt. Express 12, 2435-2447 (2004).
[5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
[6] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines⁄s,” Opt. Lett. 31, 2975-2977 (2006).
[7] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 326-332 (1995).
[8] J. S. Schuman, P. K. Tamar, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889-1898 (1996).
[9] M. R. Hee, C. A. Puliafito, J.S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J.S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105, 360-370 (1998).
[10] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 501-507 (2001).
[11] J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease, 2nd edn. (Slack Inc., Thorofare, NJ, 2004).
[12] B. H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474-479 (2001).
[13] S. Jiao, W. Yu, G. Stoica, and L.V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191-5197 (2003).
[14] S. M. Srinivas, J. F. D. Boer, and H. Park, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 207-212 (2004).
[15] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” Am. J. Gastroenterol. 92, 1800-1804 (1997).
[16] M. V. Sivak, K. Kobayashi, J.A. Izatt, et al., “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest Endosc. 51, 474-479 (2000).
[17] A. R. Tumlinson, B. Povazay, L. P. Hariri, et al., “In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope,” J. Biomed. Opt. 11, 064003 (2006).
[18] Y. Yang, S. Whiteman, D. Gey van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol. 49, 1247-1255 (2004).
[19] N. Hanna, D. Saltzman, D. Mukai, et al., “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac Cardiovasc Surg. 129, 615-622 (2005).
[20] M. Tsuboi, A. Hayashi, N. Ikeda, et al., “Optical coherence tomography in the diagnosis of bronchial lesions,” Lung Cancer 56, 387-394 (2005).
[21] S. C. Whiteman, Y. Yang, D. Gey van Pittius, M. Stephens, J. Parmer, and M. A. Spiteri, “Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes,” Clin. Cancer Res. 12, 813-818 (2006).
[22] M. E. Brezinski, G. J. Tearney, N. J. Weissman, et al., “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397-403 (1997).
[23] J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128-133 (1999).
[24] H. Kitabata, T. Kubo, and T. Akasaka, “Identification of multiple plaque ruptures by optical coherence tomography in a patient with acute myocardial infarction: a three-vessel study,” Heart 94, 544 (2008).
[25] B. Wong, R. Jackson, S. Guo S, et al., “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” The Laryngoscope 115, 1904-1911 (2005).
[26] X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337-1339 (1995).
[27] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997).
[28] J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997).
[29] G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
[30] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000)
[31] J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288-2296 (1998)
[32] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010).
[33] R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831-23844 (2010).
[34] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998).
[35] G. Hausler and M. W. Lindner, “‘Coherence Radar’ and ‘Spectral Radar’-New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[36] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[37] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[38] M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
[39] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894(2003).
[40] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[41] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[42] S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004).
[43] J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 1-3 (2005).
[44] J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μ m for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073901 (2006).
[45] Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121-6139 (2007).
[46] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
[47] D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376-4393 (2008).
[48] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700-702 (2010).
[49] C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14, 034008 (2009).
[50] J. H. Baek, T. Krasieva, S. Tang, Y. Ahn, C. S. Kim, D. Vu, Z. Chen, and P. Wilder-Smith, “Optical approach to the salivary pellicle,” J. Biomed. Opt. 14, 044001 (2009).
[51] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477 (2005).
[52] H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048-3050 (2005).
[53] E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, and M. L. Bugrova, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53, 4995-5009 (2008).
[54] M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009).
[55] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929-1934 (2007).
[56] A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents,” Opt. Express 14, 6724-6738 (2006).
[57] G. Majno and I. Joris, “Apoptosis, oncosis, and necrosis. An overview of cell death,” Am. J. Pathol. 146, 3-15 (1995)
[58] B. F. Trump, I. K. Berezesky, S. H. Chang, and P. C. Phelps, “The pathways of cell death: oncosis, apoptosis and necrosis,” Toxicol. Pathol. 25, 82-88 (1997).
[59] D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science 281, 1309-1312 (1998).
[60] G. Farhat, V. X. D. Yang, G. J. Czarnota, and M. C. Kolios, “Detecting cell death with optical coherence tomography and envelope statistics,” J. Biomed. Opt. 16, 026017 (2011).
[61] G. Farhat, A. Giles, M. C. Kolios and G. J. Czarnota, “Optical coherence tomography spectral analysis for detecting apoptosis in vitro and in vivo,” J. Biomed. Opt. 20, 126001 (2015).
[62] F. J. van der Meer, D. J. Faber, M. C. G. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis-and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers in Medical Science 25, 259–267 (2010).
[63] D. M. de Bruin, M. Broekgaarden, M. J. C. van Gemert, M. Heger, J. J. de la Rosette, T. G. Van Leeuwen and D. J. Faber, “Assesment of apoptosis induced changes in scattering using optical coherence tomography,” J. Biophoton. 9, 913–923(2016).
[64] P. Ossowski, A. Raiter-Smiljanic, A. Szkulmowska, D. Bukowska, M. Wiese, L. Derzsi, A. Eljaszewicz, P. Garstecki, and M. Wojtkowski, “Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup,” Opt. Express 23, 27724-27738 (2015).
[65] C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
[66] H. Assadi, V. Demidov, R. Karshafian, A. Douplik, and I. A. Vitkin, “Microvascular contrast enhancement in optical coherence tomography using microbubbles,” J. Biomed. Opt. 21, 076014 (2016).
[67] A. Adan, G. Alizada, Y. Kiraz, Y. Baran, A. Nalbant, G. Nel Alizada, Y. Mur Kiraz, “Flow cytometry: basic principles and applications,” Crit. Rev. Biotechnol. 37, 163–176 (2016).
[68] C. M. Henry, E. Hollville, S. J. Martin, “Measuring apoptosis by microscopy and flow cytometry,” Methods 61, 90-97(2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20699-
dc.description.abstract在本論文中,我們使用一套光學同調斷層掃描系統來掃描流過微流道的細胞樣品,並計算相應M-mode影像的時間相關常數。在培養癌細胞時,我們加入5和10%濃度的酒精來傷害細胞,使得細胞分別處於凋亡和壞死的過程。在不同的細胞死亡過程中,細胞的時間相關常數隨培養時間的變化趨勢不同,這種不同能幫助我們瞭解細胞死亡過程中的形態變化。我們也讓細胞吞食金奈米環顆粒,以增強細胞的光散射強度。通過實驗我們發現,時間相關常數主要由細胞或者細胞碎片在幾百奈米尺度的表面光滑度決定。與10%酒精培養的細胞不同,經過5%酒精培養的細胞在7小時後時間相關常數上升,這可能表明細胞凋亡最後階段形成的凋亡小體的表面光滑度比細胞壞死形成的細胞碎片的表面光滑度高。細胞吞食金奈米環的主要作用是提高光學同調斷層掃描系統的訊號強度和訊噪比。zh_TW
dc.description.abstractCell samples flowing along a microfluidic tube are scanned with an optical coherence tomography (OCT) system and their correlation times in M-mode scans are calibrated. In particular, the variations of correlation time with waiting time after 5 and 10 % ethanol are applied to the cell samples are compared for understanding the evolution of cell morphology in the cell death pathways of apoptosis and necrosis, respectively. Also, Au nanorings (NRIs) are taken up by cells for increasing the scattering strength in OCT scanning. It is found that the calibrated correlation time is mainly controlled by the surface smoothness of cells or cell fragments in a scale of several hundred nm. The increasing trend of correlation time at 7 hours after 5 % ethanol application, which is different from that in the case of 10 % ethanol application, implies that the surface smoothness of the apoptotic bodies formed at the final stage of an apoptosis process is higher than that of the cell fragments formed at the final stage of a necrosis process. The major function of Au NRI uptake by cells is to enhance OCT signal intensity and hence increase the signal-to-noise ratio.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:59:17Z (GMT). No. of bitstreams: 1
ntu-106-R03941109-1.pdf: 3679754 bytes, checksum: ea1a78328737b5aca137f2d68459be79 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 II
中文摘要 III
Abstract IV
Content V
Chapter 1 Introduction 1
1.1 Optical coherence tomography 1
1.2 Theory of optical coherence tomography 2
1.3 Fourier-domain optical coherence tomography 5
1.3.1 Spectral-domain optical coherence tomography 7
1.3.2 Swept-source optical coherence tomography 8
1.4 Using metal nanoparticles as contrast agent in OCT 9
1.5 Pathways of cell death 11
1.6 Detecting cell death processes using OCT 11
1.7 Flow cytometry 12
1.8 Research motivations 13
1.9 Thesis structure 14
Chapter 2 Optical Setup and Sample Preparation 20
2.1 Optical coherence tomography system 20
2.2 Au nanoring 21
Chapter 3 OCT Scanning Results of Cell Samples 24
3.1 M-mode scan results 24
3.2 Autocorrelation and intensity evaluations 24
3.3 Results of the cell samples without NRI incubation 27
3.4 Results of the cell samples with NRI incubation 28
Chapter 4 Discussions 48
Chapter 5 Conclusions 58
References 59
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject細胞壞死zh_TW
dc.subject時間相關常數zh_TW
dc.subject光學同調斷層掃描zh_TW
dc.subjectnecrosisen
dc.subjectcorrelation timeen
dc.subjectOCTen
dc.subjectapoptosisen
dc.title基於光學同調斷層掃描之流式細胞儀技術zh_TW
dc.titleFlow Cytometry Technique Based on Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,孫家偉,蔡孟燦,李翔傑
dc.subject.keyword光學同調斷層掃描,時間相關常數,細胞壞死,細胞凋亡,zh_TW
dc.subject.keywordOCT,correlation time,apoptosis,necrosis,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201701699
dc.rights.note未授權
dc.date.accepted2017-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved