請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20681完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為 | |
| dc.contributor.author | Yu-Cheng Shen | en |
| dc.contributor.author | 沈育誠 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:58:24Z | - |
| dc.date.copyright | 2017-08-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-28 | |
| dc.identifier.citation | Chapter 1
[1] D. Kahng, and M. M. Atalla, “Silicon-silicon dioxide field induced surface devices,” in IRE-AIEEE Solid-State Device Research Conference, (Carnegie Inst. of Tech., Pittsburgh, PA), 1960. [2] G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965),” Proc. IEEE, vol. 86, no. 1, pp.82-85, Jan, 1998. [3] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyun, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roester, J. Sanford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, G. Weber, P. Yashar, K. Zawadzki, K. Mistry, “A 22nm High Performance and Low-Power CMOS Technology Featuring Fully- Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” Symp. on VLSI Tech., pp. 131-132, Jun. 2012. [4] Aaron Thean, “Options Beyond FinFETs at 5nm Node,” IEEE International electron Device Meeting, short course, 2016. [5] C. W. Liu, Mikael Ö stling, and J. B. Hannon. 'New materials for post-Si computing.' MRS bulletin 39.08 (2014): 658-662. 000. [6] J. O. Borland and P. T. Konkola, 'Implant dopant activation comparison between silicon and germanium,' 2014 20th International Conference on Ion Implantation Technology (IIT), Portland, OR, 2014, pp. 1-4. [7] M. J. H. van Dal et al., 'Ge n-channel FinFET with optimized gate stack and contacts,' 2014 IEEE International Electron Devices Meeting, San Francisco, CA, 2014, pp. 9.5.1-9.5.4. [8] A. M. Roy, J. Y. J. Lin and K. C. Saraswat, 'Specific Contact Resistivity of Tunnel Barrier Contacts Used for Fermi Level Depinning,' in IEEE Electron Device Letters, vol. 31, no. 10, pp. 1077-1079, Oct. 2010. [9] R. Aigner, 'MEMS in RF-filter applications: thin film bulk-acoustic-wave technology,' The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05., 2005, pp. 5-8 Vol. 1. [10] R. Aigner, S. Marksteiner, L. Elbrecht and W. Nessler, 'RF-filters in mobile phone applications,' TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, Boston, MA, USA, 2003, pp. 891-894 vol.1. [11] Steven Mahon and Robert Aigner, “Bulk Acoustic Wave Devices –Why, How, and Where They are Going,” CS MANTECH Conference, May 14-17, 2007, Austin, Texas, USA. Chapter 2 [1] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyun, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roester, J. Sanford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, G. Weber, P. Yashar, K. Zawadzki, K. Mistry, “A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” Symp. on VLSI Tech., pp. 131-132, Jun. 2012. [2] Shien-Yang Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, M. Liang, T. Miyashita, C. H. Tsai, B.C. Hsu, H.Y. Chen, T. Yamamoto, S.Y. Chang, V.S. Chang, C.H. Chang, J.H. Chen, H.F. Chen, K.C. Ting, Y.K. Wu, K.H. Pan, R.F. Tsui, C.H. Yao, P.R. Chang, H.M. Lien, T.L. Lee, H.M. Lee, W. Chang, T. Chang, R. Chen, M. Yeh, C.C. Chen, Y. H. Chiu, Y.H. Chen, H.C. Huang, Y.C Lu, C.W. Chang, M.H. Tsai, C.C. Liu, K.S. Chen, C.C. Kuo, H.T. Lin, S. M. Jang, Y. Ku., 'A 16nm FinFET CMOS technology for mobile SoC and computing applications,' 2013 IEEE International Electron Devices Meeting, Washington, DC, 2013, pp. 9.1.1-9.1.4. [3] H.-J. Cho, H.S. Oh, K.J. Nam, Y.H. Kim, K.H. Yeo, W.D. Kim, Y.S. Chung, Y.S. Nam, S.M. Kim, W.H. Kwon, M.J. Kang, I.R. Kim, H. Fukutome, C.W. Jeong, H.J. Shin, Y.S. Kim, D.W. Kim, S.H. Park, H.S. Oh, J.H. Jeong, S.B. Kim, D.W. Ha, J.H. Park, H.S. Rhee, S.J. Hyun, D.S. Shin, D.H. Kim, H.Y. Kim, S. Maeda, K.H. Lee, Y.H. Kim, M.C. Kim, Y.S. Koh, B. Yoon, K. Shin, N.I. Lee, S.B. Kangh, K.H. Hwang, J.H. Lee, J.-H. Ku, S.W. Nam, S.M. Jung, H.K. Kang, J.S. Yoon, ES Jung, 'Si FinFET based 10nm technology with multi Vt gate stack for low power and high performance applications,' 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2. [4] S. Natarajan, M. Agotinelli, S. Akbar, M. Bost, A. Bowonder, V.Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E.Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P.Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J.Wiedemer, M. Yang, K. Zhang, 'A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm2 SRAM cell size,' 2014 IEEE International Electron Devices Meeting, San Francisco, CA, 2014, pp. 3.7.1-3.7.3. [5] D. Guo, G. Karve, G. Tsutsui, K-Y Lim*, R. Robison, T. Hook, R. Vega, D. Liu, S. Bedell, S. Mochizuki, F. Lie, K.Akarvardar*, M. Wang, R. Bao, S. Burns, V. Chan, K. Cheng, J. Demarest, J. Fronheiser*, P. Hashemi, J. Kelly, J. Li, N. Loubet, P. Montanini, B. Sahu*, M. Sankarapandian, S. Sieg, J. Sporre, J. Strane, R.Southwick, N. Tripathi*, R. Venigalla, J. Wang, K. Watanabe, C. W. Yeung, D. Gupta, B. Doris, N. Felix, A. Jacob*, H. Jagannathan, S. Kanakasabapathy, R. Mo, V. Narayanan, D. Sadana, P. Oldiges, J. Stathis, T. Yamashita, V. Paruchuri, M. Colburn, A. Knorr*, R. Divakaruni, H. Bu, M. Khare, 'FINFET technology featuring high mobility SiGe channel for 10nm and beyond,' 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2. [6] D. James, 'Moore's Law Continues into the 1x-nm Era,' 2016 21st International Conference on Ion Implantation Technology (IIT), Tainan, 2016, pp. 1-10. [7] J. P. Colinge, M. H. Gao, A. Romano-Rodriguez, H. Maes and C. Claeys,'Silicon-on-insulator 'gate-all-around device',' International Technical Digest on Electron Devices, San Francisco, CA, USA, 1990, pp. 595-598. [8] Colinge, Jean-Pierre. 'Multiple-gate soi mosfets.' Solid-State Electronics 48.6 (2004): 897-905. [9] Li Zhang, Ryan Tu, and Hongjie Dai. 'Parallel core− shell metal-dielectricsemiconductor germanium nanowires for high-current surround-gate field effect transistors.' Nano letters 6.12 (2006): 2785-2789. [10] Jérémy Pretet, Stephane Monfray, Sorin Cristoloveanu, and Thomas Skotnicki 'Silicon-on-nothing MOSFETs: performance, short-channel effects, and backgate coupling.' IEEE Transactions on Electron Devices 51.2 (2004): 240-245. [11] K. Romanjek, E. Augendre, W. Van Den Daele, B. Grandchamp, L. Sanchez, C. Le Royer, J.-M. Hartmann, B. Ghyselen, E. Guiot, K. Bourdelle, S. Cristoloveanu, F. Boulanger, and L. Clavelier, 'Improved GeOI substrates for pMOSFET off-state leakage control.' Microelectronic Engineering 86.7 (2009):1585-1588. [12] J. W. Peng, N. Singh, G. Q. Lo, D.L. Kwong, and S. J. Lee, 'CMOS compatible Ge/Si core/shell nanowire gate-all-around pMOSFET integrated with HfO2/TaN gate stack.' Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009. [13] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, Highperformance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–386, May 2006. [14] Shu-Han Hsu et al., 'Nearly defect-free Ge gate-all-around FETs on Si substrates,' 2011 International Electron Devices Meeting, Washington, DC, 2011, pp. 35.2.1-35.2.4. [15] Akira Toriumi, Toshiyuki Tabata, Choong Hyun Lee, Tomonori Nishimura, Koji Kita, Kosuke Nagashio, Opportunities and challenges for Ge CMOS – Control of interfacing field on Ge is a key (Invited Paper), Microelectronic Engineering, Volume 86, Issue 7, 2009, Pages 1571-1576, [16] S. H. Hsu et al., 'Triangular-channel Ge NFETs on Si with (111) sidewallenhanced Ion and nearly defect-free channels,' 2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 23.6.1-23.6.4. [17] Y. J. Lee et al., 'Diamond-shaped Ge and Ge0.9Si0.1 gate-all-around nanowire FETs with four {111} facets by dry etch technology,' 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 15.1.1-15.1.4. [18] G. Hellings, G. Eneman, M. Meuris and K. De Meyer, 'Analytical model and Monte Carlo Simulations for Phosphorus implantation in Germanium including ion channeling,' 2008 International Conference on Simulation of Semiconductor Processes and Devices, Hakone, 2008, pp. 253-256. [19] Y. S. Suh, M. S. Carroll, R. A. Levy, M. A. Sahiner, G. Bisognin and C. A. King, 'Modeling of boron and phosphorus implantation into (100) Germanium,' in IEEE Transactions on Electron Devices, vol. 52, no. 1, pp. 91- 98, Jan. 2005. [20] W. Hsu et al., 'High Phosphorus Dopant Activation in Germanium Using Laser Spike Annealing,' in IEEE Electron Device Letters, vol. 37, no. 9, pp. 1088-1091, Sept. 2016. [21] M. Shayesteh et al., 'Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current,' in IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4047-4055, Dec. 2014. [22] V. Mazzocchi et al., 'Boron and Phosphorus dopant activation in Germanium using laser annealing with and without preamorphization implant,' 2009 17th International Conference on Advanced Thermal Processing of Semiconductors, Albany, NY, 2009, pp. 1-5. [23] F. Liu et al., 'Laser Annealing of Amorphous Germanium on Silicon–Germanium Source/Drain for Strain and Performance Enhancement in pMOSFETs,' in IEEE Electron Device Letters, vol. 29, no. 8, pp. 885-888, Aug. 2008. [24] Chun-Ti Lu, Fang-Liang Lu, Chung-En Tsai, Wen-Hung Huang, and C. W. Liu, “Process simulation of pulsed laser annealing on epitaxial Ge on Si,” accepted by ECS J. Solid State Sci. Tech. 2017. Chapter 3 [1] S. Sahay and M. J. Kumar, 'Physical Insights Into the Nature of Gate-Induced Drain Leakage in Ultrashort Channel Nanowire FETs,' in IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2604-2610, June 2017. [2] J. Fan, M. Li, X. Xu, Y. Yang, H. Xuan and R. Huang, 'Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors,' in IEEE Transactions on Electron Devices, vol. 62, no. 1, pp. 213-219, Jan. 2015. [3] M. Shayesteh et al., 'Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current,' in IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4047-4055, Dec. 2014. [4] M. Shayesteh et al., 'NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices,' in IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 3801-3807, Nov. 2011. [5] A. Boudou and B. S. Doyle, 'Hysteresis I-V effects in short-channel Silicon MOSFET's,' in IEEE Electron Device Letters, vol. 8, no. 7, pp. 300-302, Jul 1987. [6] S. Takagi, A. Toriumi, M. Iwase, H. Tango, 'On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration.' IEEE Transactions on Electron Devices 41.12 (1994): 2357-2362. [7] R. Rurali, T. Markussen, J. Suñé, M. Brandbyge and A. P. Jauho, 'Scattering of charged impurities in Si nanowires,' 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), Genoa, 2009, pp. 547-550. [8] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, 'High κ/metal-gate stack and its MOSFET characteristics,' in IEEE Electron Device Letters, vol. 25, no. 6, pp. 408-410, June 2004. [9] W. J. Zhu and T. P. Ma, 'Temperature dependence of channel mobility in HfO2 gated NMOSFETs,' in IEEE Electron Device Letters, vol. 25, no. 2, pp. 89-91, Feb. 2004. [10] B. J. Baliga, T. Syau and P. Venkatraman, 'The accumulation-mode field-effect transistor: a new ultralow on-resistance MOSFET,' in IEEE Electron Device Letters, vol. 13, no. 8, pp. 427-429, Aug. 1992. [11] D. Kasprowicz, 'Channel charge model of a dual-gate junctionless transistor,' 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), Torun, 2015, pp. 216-221. [12] Y. S. Yu, 'A Unified Analytical Current Model for N- and P-Type Accumulation-Mode (Junctionless) Surrounding-Gate Nanowire FETs,' in IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 3007-3010, Aug. 2014. [13] M. J. H. van Dal et al., 'Germanium n-Channel Planar FET and FinFET: Gate Stack and Contact Optimization,' in IEEE Transactions on Electron Devices, vol. 62, no. 11, pp. 3567-3574, Nov. 2015. [14] P. M. Fauchet, 'The Raman microprobe: A quantitative analytical tool to characterize laser-processed semiconductors,' in IEEE Circuits and Devices Magazine, vol. 2, no. 1, pp. 37-43, Jan. 1986. [15] C.-Y. Peng, C.-F. Huang, Y.-C. Fu, Y.-H. Yang, C.-Y. Lai, S.-T. Chang, and C. W. Liu, “Comprehensive study of the Raman shifts of strained silicon and germanium”, Journal of Applied Physics 105, 083537 (2009) [16] S. Nakashima and T. MitaniM. Ninomiya and K. Matsumoto, “Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands,” Journal of Applied Physics 99, 053512 (2006) [17] I. De Wolf, J. Vanhellemont, A. Romano‐Rodríguez, H. Norström, and H. E. Maes,” Micro-Raman study of stress distribution in local isolation structures and correlation with transmission electron microscopy,” Journal of Applied Physics 71, 898 (1992) [18] H. Y. Ye, H. S. Lan and C. W. Liu, 'Electron Mobility in Junctionless Ge Nanowire NFETs,' in IEEE Transactions on Electron Devices, vol. 63, no. 11, pp. 4191-4195, Nov. 2016. Chapter 4 [1] E. Halepovic, C. Williamson and M. Ghaderi, 'Wireless data traffic: a decade of change,' in IEEE Network, vol. 23, no. 2, pp. 20-26, March 2009. [2] Y. Chen, B. Wang, Y. Han, H. Q. Lai, Z. Safar and K. J. R. Liu, 'Why Time Reversal for Future 5G Wireless? [Perspectives],' in IEEE Signal Processing Magazine, vol. 33, no. 2, pp. 17-26, March 2016. [3] https://www.qualcomm.com/invention/5g [4] M. Kowatsch, 'Application of surface-acoustic-wave technology to burst format spread-spectrum communications,' in Communications, Radar and Signal Processing, IEE Proceedings F, vol. 131, no. 7, pp. 734-741, December 1984. [5] R. Aigner, 'MEMS in RF-filter applications: thin film bulk-acoustic-wave technology,' The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05., 2005, pp. 5-8 Vol. 1. [6] R. Aigner, S. Marksteiner, L. Elbrecht and W. Nessler, 'RF-filters in mobile phone applications,' TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, Boston, MA, USA, 2003, pp. 891-894 vol.1. [7] B. A. Auld, “Acoustic Fields and Waves in Solids.” 1990. [8] S. A. Morris and C. G. Hutchens, 'Implementation of Mason's Model on Circuit Analysis Programs,' in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 33, no. 3, pp. 295-298, May 1986. [9] Yuxing Zhang, Zuoqing Wang and J. D. N. Cheeke, 'Resonant spectrum method to characterize piezoelectric films in composite resonators,' in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 3, pp. 321-333, March 2003. [10] J. Kaitila, M. Ylilammi, J. Ella and R. Aigner, 'Spurious resonance free bulk acoustic wave resonators,' IEEE Symposium on Ultrasonics, 2003, 2003, pp. 84-87 Vol.1. [11] D. Rosen, J. Bjurstrom and I. Katardjiev, 'Suppression of spurious lateral modes in thickness-excited FBAR resonators,' in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 7, pp. 1189-1192, July 2005. [12] S. Tanifuji, Y. Aota, H. Oguma, S. Kameda, T. Takagi and K. Tsubouchi, 'Spurious vibration suppression by film thickness control for FBAR,' 2008 IEEE Ultrasonics Symposium, Beijing, 2008, pp. 2193-2196. [13] T. Makkonen, A. Holappa, J. Ella and M. M. Salomea, 'Finite element simulations of thin-film composite BAW resonators,' in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 5, pp. 1241-1258, Sept. 2001. [14] Jiunn-Horng Lee, Chih-Min Yao, Kung-Yu Tzeng, Chih-Wei Cheng and Yu Ching Shih, 'Optimization of frame-like film bulk acoustic resonators for suppression of spurious lateral modes using finite element method,' IEEE Ultrasonics Symposium, 2004, 2004, pp. 278-281 Vol.1. [15] A. Link, E. Schmidhammer, H. Heinze, M. Mayer, B. Bader and R. Weigel, 'Appropriate Methods to Suppress Spurious FBAR Modes in Volume Production,' 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, 2006, pp. 394-397. [16] R. Thalhammer and J. D. Larson, 'Finite element analysis of BAW devices: Principles and perspectives,' 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, 2015, pp. 1-10. [17] S. Giraud, S. Bila, M. Aubourg and D. Cros, 'Bulk acoustic wave resonators 3D simulation,' 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, 2007, pp. 1147-1151. [18] Zhang, Yafei, Chen, Da, “Multilayer Integrated Film Bulk Acoustic Resonators,” 2013 [19] L. García-Gancedo et al., 'Fabrication of high-Q film bulk acoustic resonator (FBAR) filters with carbon nanotube (CNT) electrodes,' 2010 IEEE International Ultrasonics Symposium, San Diego, CA, 2010, pp. 301-304. [20] Y. Aota et al., '4D-4 Fabrication of FBAR for GHz Band Pass Filter with AlN Film Grown Using MOCVD,' 2006 IEEE Ultrasonics Symposium, Vancouver, BC, 2006, pp. 337-340. [21] Hashimoto, “RF Bulk Acoustic Wave Filters for Communications,” 2009 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20681 | - |
| dc.description.abstract | 在過去四十年,半導體產業隨著摩爾定律的腳步,將元件尺寸不斷微縮,以製作更高效能的電晶體,造就了智慧型手機與電腦的蓬勃發展與延伸應用,使人類的生活更加的便利。在22nm 結點以前的許多研究都注重在傳統平面式的金氧半場效電晶體,隨著業界三維電晶體的量產,必須將新的模組技術應用在此架構上,我們利用磊晶技術將鍺薄膜成長在絕緣層上矽晶圓上,在使用反應式離子蝕刻技術,可以將鍺與矽之間的缺陷與錯位去除,並形成只有鍺的懸空奈米線,加上使用雙束聚焦離子束系統,在鍺通道奈米線沉積碳的保護層以阻擋通道受到離子佈植,之後使用原子層磊晶技術,成長環繞式的氧化層與閘極堆疊,並鍍上閘極電極,最後再使用選擇性雷射熱退火技術,將源極汲極的參雜載子濃度與活化率提升。使鍺通道奈米線形成環繞式閘極電晶體。
我們分析了電晶體的電性量測結果與在低溫下的特性,並外加拉伸應變給此電晶體且分析其電性,我們製作出通道長度為一百奈米之鍺通道環繞閘極式N 型場效電晶體,有著次臨限擺幅129mV/dec 和導通電流等於14 微安培,在外加拉伸應變下,導通電流可以進一步提升百分之六。 隨著摩爾定律的腳步,我們有許多高效能的手機可以使用,預期在五年內,手機與物聯網的成長仍是蓬勃發展的,這些產品背後的推手,除了高效能的數位晶片外,更重要的是有無線通訊技術,傳遞這些巨量的資料。 在手機載體中,必須有類比電路組成的雙工器或是多工器,處理高頻的類比訊號,在2G 與3G 時代,這些雙工器多是以表面聲波共振器組成,隨著無線通訊技術進入4G 時代,因為表面聲波共振器開始無法有效處理這些高頻訊號,他逐漸被薄膜體聲波共振器取代,薄膜體聲波共振器在處理高頻訊號上有著低插入損耗與高品質因子的優勢,是做成未來手機濾波器的主力技術,隨著5G 世代的到來與物聯網的崛起,他的成長仍是不斷被看好的。 在此研究中,我們探討了薄膜體聲波共振器的基本物理性質,利用MATLAB 科學計算軟體實作Mason 模型,並使用多層理論模型以方便快速設計共振器,再搭配有限元素模擬軟體驗證理論模型,最後,分別從材料選擇上與厚度的調整,我們得出氮化鋁作為共振器的壓電材料是最佳選擇,在電極的選擇上鉬元素會優於鋁,在厚度方面,越薄的電極厚度與越厚的壓電層可以做出高頻寬的共振器。 | zh_TW |
| dc.description.abstract | In the past 40 years, the semiconductor industry follows the path of Moore’s law to continuously scale the physics dimension of the devices. As a result, high performance transistors enable the smartphone and computer’s application and growing. Human beings are benefit from the technology products and have a convenient life. Before 22nm technology node, most research focus on the traditional planar MOSFETs. With the mass production of 3-D transistor in industry, we need to incorporate new module technology into this architecture. High quality Ge is deposited on SOI wafer using epitaxy. Combining reactive ion etching technology, the misfit dislocations and defects can be easily removed, resulting in the floating germanium nanowire. The carbon mask gate pattering is performed by focus ion beam system before ion implantation. The conformal gate stack was deposited by ALD system. At the end of the fabrication, selective laser annealing is used to activate the dopant in S/D region.
The electrical properties and strain response of the device is measured and analyzed. The gate length of 100nm device is achieved with drive current = 14 A at Vov/VDS=1V/1V. The drive current can be enhanced for 6% under external uniaxial strain. Following the path of the Moore’s law, we have many high performance smartphones in our daily life. The cellphone market is estimated to continuously grow for the next five years and the IOT generation is coming behind. The key technology pushes those product is the wireless communication system to transfer the huge amount of the data. In cellphone, the multiplexers and duplexers are used to compute the high frequency analog signal. In 2G and 3G generation, most of those devices are composed of surface acoustic wave resonator. As the approach of 4G generation, the surface acoustic wave resonator cannot compute the high radio frequency signal efficiently. Thus, it is gradually replaced by film bulk acoustic wave resonator. Film bulk acoustic wave resonator has the advantages of low insertion loss and high quality factor, which is the mainstream technology for future filter. In this research, we study the fundamental physics of the resonator form basic piezoelectric material properties and acoustic wave equation to frequency response. Then we extend the model to accurate multi-layer model to design the resonator efficiently using the MATLAB. The model is verified by the commercial finite element modeling software. In summary, aluminum nitride is the suitable piezoelectric material for FBAR. For piezoelectric layer, the thicker is the better while the electrode layer is opposite. Based on the above, high performance FBAR can be constructed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:58:24Z (GMT). No. of bitstreams: 1 ntu-106-R04943053-1.pdf: 3471385 bytes, checksum: c84e9879bcf08dca701699ea74a8d622 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction...............................................................................1
1.1 Background and Motivation ........................................................1 1.2 Thesis Organization .....................................................................5 1.3 Reference......................................................................................7 Chapter 2 Fabrication of Germanium Gate-All-Around NFETs ..........9 2.1 Introduction................................................................................9 2.2 High quality Ge Epitaxy on Si .................................................10 2.3 Nanowire Formation ................................................................11 2.4 Gate Patterning and S/D Ion Implantation...............................18 2.5 Selective Laser Annealing and Contact Pad Fabrication.........20 2.6 The Process Flow.....................................................................23 2.7 Summary ..................................................................................24 2.8 Reference..................................................................................26 Chapter 3 Electrical Characteristics and Temperature Dependence of Germanium Gate-All-Around NFETs ....................................................31 3.1 Introduction..............................................................................31 3.2 Electrical Properties .................................................................32 3.3 Temperature Dependence ........................................................37 3.4 Strain Response........................................................................40 3.5 Summary ..................................................................................44 3.6 Reference..................................................................................45 Chapter 4 Film Bulk Acoustic Wave Resonator ....................................48 4.1 Introduction..............................................................................48 4.2 1-D Mason Model ....................................................................49 4.3 Extended Mason Model for Composite Resonators ................57 4.4 Thickness Optimization of Composite Resonators..................60 4.5 Material Selection of Composite Resonators...........................63 4.6 Summary ..................................................................................66 4.7 Reference..................................................................................68 Chapter 5 Summary and Future Work ..................................................71 5.1 Summary ..................................................................................71 5.2 Future Work .............................................................................72 | |
| dc.language.iso | en | |
| dc.subject | 鍺 | zh_TW |
| dc.subject | Mason模型 | zh_TW |
| dc.subject | 薄膜體聲波共振器 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | 閘極環繞式電晶體 | zh_TW |
| dc.subject | 金氧半場效電晶體 | zh_TW |
| dc.subject | germanium | en |
| dc.subject | Mason model | en |
| dc.subject | piezoelectric material | en |
| dc.subject | gate-allaround transistor | en |
| dc.subject | thin film bulk acoustic waver resonator | en |
| dc.subject | metal-oxide-semiconductor field effect transistor | en |
| dc.title | 鍺通道環繞式閘極電晶體與薄膜體聲波共振器 | zh_TW |
| dc.title | Study of Germanium Gate-All-Around nFETs and Film Bulk
Acoustic Wave Resonator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林中一,李敏鴻,林楚軒 | |
| dc.subject.keyword | 鍺,金氧半場效電晶體,閘極環繞式電晶體,壓電材料,薄膜體聲波共振器,Mason模型, | zh_TW |
| dc.subject.keyword | germanium,metal-oxide-semiconductor field effect transistor,gate-allaround transistor,piezoelectric material,thin film bulk acoustic waver resonator,Mason model, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201702132 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
