請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20679完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃德富(Tur-Fu Huang) | |
| dc.contributor.author | Yu-Ju Kuo | en |
| dc.contributor.author | 郭育汝 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:58:19Z | - |
| dc.date.copyright | 2017-08-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-28 | |
| dc.identifier.citation | 1. Huang TF. What have snakes taught us about integrins? Cellular and Molecular Life Sciences. 1998;54(6):527-540.
2. Marsh N, Williams V. Practical applications of snake venom toxins in haemostasis. Toxicon. 2005;45(8):1171-1181. 3. Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost. 2005;3(8):1791-1799. 4. Calvete JJ, Marcinkiewicz C, Monleon D, et al. Snake venom disintegrins: evolution of structure and function. Toxicon. 2005;45(8):1063-1074. 5. Koh DCI, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences. 2006;63(24):3030-3041. 6. Wijeyewickrema LC, Berndt MC, Andrews RK. Snake venom probes of platelet adhesion receptors and their ligands. Toxicon. 2005;45(8):1051-1061. 7. Wang WJ, Huang TF. A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thrombosis and Haemostasis. 2001;86(4):1077-1086. 8. Chung CH, Peng HC, Huang TF. Aggretin, a C-type lectin protein, induces platelet aggregation via integrin alpha(2)beta(1) and GPIb in a phosphatidylinositol 3-kinase independent pathway. Biochem Biophys Res Commun. 2001;285(3):689-695. 9. Chang CH, Chung CH, Kuo HL, Hsu CC, Huang TF. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. Journal of Thrombosis and Haemostasis. 2008;6(4):669-676. 10. Suzuki-Inoue K, Fuller GLJ, Garcia A, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542-549. 11. Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. Febs Journal. 2008;275(12):3016-3030. 12. Lu D, Scully M, Kakkar V, Lu XJ. ADAM-15 Disintegrin-Like Domain Structure and Function. Toxins. 2010;2(10):2411-2427. 13. Kini RM. Structure-function relationships and mechanism of anticoagulant phospholipase A(2) enzymes from snake venoms. Toxicon. 2005;45(8):1147-1161. 14. Pirkle H. Thrombin-like enzymes from snake venoms: An updated inventory - On behalf of the Scientific and Standardization Committee's Registry of Exogenous Hemostatic Factors. Thrombosis and Haemostasis. 1998;79(3):675-683. 15. Ouyang C, Huang TF. Inhibition of Platelet-Aggregation by 5'-Nucleotidase Purified from Trimeresurus-Gramineus Snake-Venom. Toxicon. 1983;21(4):491-501. 16. Du XY, Clemetson KJ. Snake venom L-amino acid oxidases (vol 40, pg 659, 2002). Toxicon. 2002;40(9):1381-1381. 17. Huang TF, Holt JC, Lukasiewicz H, Niewiarowski S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem. 1987;262(33):16157-16163. 18. Two i.v. antiplatelet agents marketed for coronary disease. Am J Health Syst Pharm. 1998;55(14):1440, 1443. 19. Stangl PA, Lewis S. Review of Currently Available GP IIb/IIIa Inhibitors and Their Role in Peripheral Vascular Interventions. Semin Intervent Radiol. 2010;27(4):412-421. 20. Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the 'magic bullet'. Nat Rev Drug Discov. 2003;2(10):775-789. 21. Calvete JJ. Platelet integrin GPIIb/IIIa: structure-function correlations. An update and lessons from other integrins. Proc Soc Exp Biol Med. 1999;222(1):29-38. 22. Plow EF, Dsouza SE, Ginsberg MH. Ligand-Binding to Gpiib-Iiia - a Status-Report. Seminars in Thrombosis and Hemostasis. 1992;18(3):324-332. 23. Vinogradova O, Velyvis A, Velyviene A, et al. A structural mechanism of integrin alpha(IIb)beta(3) 'inside-out' activation as regulated by its cytoplasmic face. Cell. 2002;110(5):587-597. 24. Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science. 2003;301(5640):1720-1725. 25. Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alpha IIb beta 3 transmembrane complex explains integrin transmembrane signalling. Embo Journal. 2009;28(9):1351-1361. 26. Bougie DW, Rasmussen M, Zhu JQ, Aster RH. Antibodies causing thrombocytopenia in patients treated with RGD-mimetic platelet inhibitors recognize ligand-specific conformers of alpha(IIb)/beta(3) integrin. Blood. 2012;119(26):6317-6325. 27. Hagemeyer CE, Peter K. Targeting the Platelet Integrin GPIIb/IIIa. Current Pharmaceutical Design. 2010;16(37):4119-4133. 28. Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 2004;432(7013):59-67. 29. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nature Reviews Molecular Cell Biology. 2010;11(4):288-300. 30. Bougie DW, Rasmussen M, Zhu J, Aster RH. Antibodies causing thrombocytopenia in patients treated with RGD-mimetic platelet inhibitors recognize ligand-specific conformers of alphaIIb/beta3 integrin. Blood. 2012;119(26):6317-6325. 31. Estevez B, Shen B, Du XP. Targeting Integrin and Integrin Signaling in Treating Thrombosis. Arteriosclerosis Thrombosis and Vascular Biology. 2015;35(1):24-29. 32. Coller BS, Folts JD, Smith SR, Scudder LE, Jordan R. Abolition of in vivo platelet thrombus formation in primates with monoclonal antibodies to the platelet GPIIb/IIIa receptor. Correlation with bleeding time, platelet aggregation, and blockade of GPIIb/IIIa receptors. Circulation. 1989;80(6):1766-1774. 33. Bougie DW, Wilker PR, Wuitschick ED, et al. Acute thrombocytopenia after treatment with tirofiban or eptifibatide is associated with antibodies specific for ligand-occupied GPIIb/IIIa. Blood. 2002;100(6):2071-2076. 34. Gulino D, Ryckewaert JJ, Andrieux A, Rabiet MJ, Marguerie G. Identification of a Monoclonal-Antibody against Platelet Gpiib That Interacts with a Calcium-Binding Site and Induces Aggregation. Journal of Biological Chemistry. 1990;265(16):9575-9581. 35. Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 2004;104(6):1606-1615. 36. Horsewood P, Hayward CPM, Warkentin TE, Kelton JG. Investigation of the Mechanisms of Monoclonal Antibody-Induced Platelet Activation. Blood. 1991;78(4):1019-1026. 37. Slupsky JR, Cawley JC, Griffith LS, Shaw ARE, Zuzel M. Role of Fc-Gamma-Rii in Platelet Activation by Monoclonal-Antibodies. Journal of Immunology. 1992;148(10):3189-3194. 38. Huang TF, Chang CH, Ho PL, Chung CH. FcgammaRII mediates platelet aggregation caused by disintegrins and GPIIb/IIIa monoclonal antibody, AP2. Exp Hematol. 2008;36(12):1704-1713. 39. Gao C, Boylan B, Bougie D, et al. Eptifibatide-induced thrombocytopenia and thrombosis in humans require FcgammaRIIa and the integrin beta3 cytoplasmic domain. J Clin Invest. 2009;119(3):504-511. 40. Armstrong PC, Peter K. GPIIb/IIIa inhibitors: From bench to bedside and back to bench again. Thrombosis and Haemostasis. 2012;107(5):808-814. 41. Shen B, Zhao XJ, O'Brien KA, et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature. 2013;503(7474):131-+. 42. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Medicine. 2008;14(3):325-330. 43. Nieswandt B, Moser M, Pleines I, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. Journal of Experimental Medicine. 2007;204(13):3113-3118. 44. Petrich BG, Fogelstrand P, Partridge AW, et al. The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation. J Clin Invest. 2007;117(8):2250-2259. 45. Gould RJ, Polokoff MA, Friedman PA, et al. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 1990;195(2):168-171. 46. Huang TF, Hsu CC, Kuo YJ. Anti-thrombotic agents derived from snake venom proteins. Thromb J. 2016;14(Suppl 1):18. 47. Bledzka K, Smyth SS, Plow EF. Integrin alphaIIbbeta3: from discovery to efficacious therapeutic target. Circ Res. 2013;112(8):1189-1200. 48. Swieringa F, Kuijpers MJ, Heemskerk JW, van der Meijden PE. Targeting platelet receptor function in thrombus formation: the risk of bleeding. Blood Rev. 2014;28(1):9-21. 49. Bassand JP. Current antithrombotic agents for acute coronary syndromes: focus on bleeding risk. Int J Cardiol. 2013;163(1):5-18. 50. Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol. 2015;35(1):24-29. 51. Bednar B, Cook JJ, Holahan MA, et al. Fibrinogen receptor antagonist-induced thrombocytopenia in chimpanzee and rhesus monkey associated with preexisting drug-dependent antibodies to platelet glycoprotein IIb/IIIa. Blood. 1999;94(2):587-599. 52. Zhi H, Rauova L, Hayes V, et al. Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo. Blood. 2013;121(10):1858-1867. 53. Newman PJ, McEver RP, Doers MP, Kunicki TJ. Synergistic action of two murine monoclonal antibodies that inhibit ADP-induced platelet aggregation without blocking fibrinogen binding. Blood. 1987;69(2):668-676. 54. Hsu CC, Chuang WJ, Chung CH, Chang CH, Peng HC, Huang TF. Improved antithrombotic activity and diminished bleeding side effect of a PEGylated alphaIIbbeta3 antagonist, disintegrin. Thromb Res. 2016;143:3-10. 55. Guo RT, Chou LJ, Chen YC, et al. Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins. 2001;43(4):499-508. 56. Shiu JH, Chen CY, Chen YC, et al. Effect of P to A mutation of the N-terminal residue adjacent to the Rgd motif on rhodostomin: importance of dynamics in integrin recognition. PLoS One. 2012;7(1):e28833. 57. Shen B, Zhao X, O'Brien KA, et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature. 2013;503(7474):131-135. 58. Du XP, Plow EF, Frelinger AL, 3rd, O'Toole TE, Loftus JC, Ginsberg MH. Ligands 'activate' integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell. 1991;65(3):409-416. 59. Negri A, Li J, Naini S, Coller BS, Filizola M. Structure-based virtual screening of small-molecule antagonists of platelet integrin alphaIIbbeta3 that do not prime the receptor to bind ligand. J Comput Aided Mol Des. 2012;26(9):1005-1015. 60. Yeung MC, Tong SY, Tong PY, Cheung BH, Ng JY, Leung GK. Use of viscoelastic haemostatic assay in emergency and elective surgery. Hong Kong Med J. 2015;21(1):45-51. 61. Hirsh J, Spillert CR, Delledonne EP, Lazaro EJ. In-Vitro Effect of Hirudin on Recalcification Time. Journal of the National Medical Association. 1994;86(8):627-628. 62. Tucker KL, Sage T, Gibbins JM. Clot retraction. Methods Mol Biol. 2012;788:101-107. 63. Huang TF, Wang WJ, Teng CM, Liu CS, Ouyang C. Purification and characterization of an antiplatelet peptide, arietin, from Bitis arietans venom. Biochim Biophys Acta. 1991;1074(1):136-143. 64. McKenzie SE, Taylor SM, Malladi P, et al. The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: A transgenic mouse model. Journal of Immunology. 1999;162(7):4311-4318. 65. Huang SW, Kuo HL, Hsu MT, et al. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models. Thromb Haemost. 2016;116(2). 66. Hsu CC, Wu WB, Chang YH, Kuo HL, Huang TF. Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol. 2007;72(4):984-992. 67. Chang CH, Chung CH, Kuo HL, Hsu CC, Huang TF. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J Thromb Haemost. 2008;6(4):669-676. 68. Petras D, Heiss P, Sussmuth RD, Calvete JJ. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. J Proteome Res. 2015;14(6):2539-2556. 69. Chait BT. Chemistry. Mass spectrometry: bottom-up or top-down? Science. 2006;314(5796):65-66. 70. Tsai IH, Wang YM, Lee YH. Characterization of a cDNA encoding the precursor of platelet aggregation inhibition and metalloproteinase from Trimeresurus mucrosquamatus venom. Biochim Biophys Acta. 1994;1200(3):337-340. 71. Chang HH, Hu ST, Huang TF, Chen SH, Lee YH, Lo SJ. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun. 1993;190(1):242-249. 72. Beer JH, Springer KT, Coller BS. Immobilized Arg-Gly-Asp (RGD) peptides of varying lengths as structural probes of the platelet glycoprotein IIb/IIIa receptor. Blood. 1992;79(1):117-128. 73. Byron A, Humphries JD, Askari JA, Craig SE, Mould AP, Humphries MJ. Anti-integrin monoclonal antibodies. J Cell Sci. 2009;122(Pt 22):4009-4011. 74. Huang TF, Liu CZ, Ouyang CH, Teng CM. Halysin, an antiplatelet Arg-Gly-Asp-containing snake venom peptide, as fibrinogen receptor antagonist. Biochem Pharmacol. 1991;42(6):1209-1219. 75. Huang TF, Sheu JR, Teng CM, Chen SW, Liu CS. Triflavin, an antiplatelet Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane glycoprotein IIb-IIIa complex. J Biochem. 1991;109(2):328-334. 76. Tomiyama Y, Tsubakio T, Piotrowicz RS, Kurata Y, Loftus JC, Kunicki TJ. The Arg-Gly-Asp (RGD) recognition site of platelet glycoprotein IIb-IIIa on nonactivated platelets is accessible to high-affinity macromolecules. Blood. 1992;79(9):2303-2312. 77. Cox D, Smith R, Quinn M, Theroux P, Crean P, Fitzgerald DJ. Evidence of platelet activation during treatment with a GPIIb/IIIa antagonist in patients presenting with acute coronary syndromes. J Am Coll Cardiol. 2000;36(5):1514-1519. 78. Pidard D, Montgomery RR, Bennett JS, Kunicki TJ. Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets. J Biol Chem. 1983;258(20):12582-12586. 79. Morel O, Jesel L, Chauvin M, Freyssinet JM, Toti F. Eptifibatide-induced thrombocytopenia and circulating procoagulant platelet-derived microparticles in a patient with acute coronary syndrome. J Thromb Haemost. 2003;1(12):2685-2687. 80. Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood. 2008;112(7):2780-2786. 81. Worth RG, Chien CD, Chien P, Reilly MP, McKenzie SE, Schreiber AD. Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp Hematol. 2006;34(11):1490-1495. 82. McKenzie SE, Taylor SM, Malladi P, et al. The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol. 1999;162(7):4311-4318. 83. Ganter MT, Hofer CK. Coagulation monitoring: Current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesthesia and Analgesia. 2008;106(5):1366-1375. 84. Lance MD. A general review of major global coagulation assays: thrombelastography, thrombin generation test and clot waveform analysis. Thromb J. 2015;13:1. 85. Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood. 2011;117(5):1719-1722. 86. Harrison P. The role of PFA-100((R)) testing in the investigation and management of haemostatic defects in children and adults. British Journal of Haematology. 2005;130(1):3-10. 87. Schwarz M, Meade G, Stoll P, et al. Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ Res. 2006;99(1):25-33. 88. Zhu J, Zhu J, Negri A, et al. Closed headpiece of integrin alphaIIbbeta3 and its complex with an alphaIIbbeta3-specific antagonist that does not induce opening. Blood. 2010;116(23):5050-5059. 89. Aster RH. Immune thrombocytopenia caused by glycoprotein IIb/IIIa inhibitors. Chest. 2005;127(2 Suppl):53S-59S. 90. Bledzka K, Smyth SS, Plow EF. Integrin alpha IIb beta 3 From Discovery to Efficacious Therapeutic Target. Circulation Research. 2013;112(8):1189-1200. 91. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69(1):11-25. 92. Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. Science. 1986;231(4745):1559-1562. 93. Huang TF, Holt JC, Kirby EP, Niewiarowski S. Trigramin - Primary Structure and Its Inhibition of Vonwillebrand-Factor Binding to Glycoprotein-Iib/Iiia Complex on Human-Platelets. Biochemistry. 1989;28(2):661-666. 94. Marcinkiewicz C. Applications of snake venom components to modulate integrin activities in cell-matrix interactions. International Journal of Biochemistry & Cell Biology. 2013;45(9):1974-1986. 95. Calvete JJ. The continuing saga of snake venom disintegrins. Toxicon. 2013;62:40-49. 96. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. 2010;11(4):288-300. 97. Moser M, Legate KR, Zent R, Fassler R. The tail of integrins, talin, and kindlins. Science. 2009;324(5929):895-899. 98. Tadokoro S, Shattil SJ, Eto K, et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science. 2003;302(5642):103-106. 99. Moers A, Nieswandt B, Massberg S, et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med. 2003;9(11):1418-1422. 100. Li Z, Delaney MK, O'Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010;30(12):2341-2349. 101. Gong H, Shen B, Flevaris P, et al. G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin 'outside-in' signaling. Science. 2010;327(5963):340-343. 102. Aslan JE, McCarty OJ. Rho GTPases in platelet function. J Thromb Haemost. 2013;11(1):35-46. 103. Liu CZ, Wang YW, Shen MC, Huang TF. Analysis of Human Platelet Glycoprotein Iib-Iiia by Fluorescein Isothiocyanate-Conjugated Disintegrins with Flow-Cytometry. Thrombosis and Haemostasis. 1994;72(6):919-925. 104. Hsu CC, Wu WB, Huang TF. A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost. 2008;6(9):1578-1585. 105. Schneider DJ, Taatjes DJ, Sobel BE. Paradoxical inhibition of fibrinogen binding and potentiation of alpha-granule release by specific types of inhibitors of glycoprotein IIb-IIIa. Cardiovasc Res. 2000;45(2):437-446. 106. Harrison P. The role of PFA-100 testing in the investigation and management of haemostatic defects in children and adults. Br J Haematol. 2005;130(1):3-10. 107. Chang MC, Huang TF. In-Vivo Effect of a Thrombin-Like Enzyme on Platelet Plug Formation Induced in Mesenteric Microvessels of Mice. Thrombosis Research. 1994;73(1):31-38. 108. Kwon I, Hong SY, Kim YD, et al. Thrombolytic Effects of the Snake Venom Disintegrin Saxatilin Determined by Novel Assessment Methods: A FeCl3-Induced Thrombosis Model in Mice. Plos One. 2013;8(11). 109. Chang MC, Lin HK, Peng HC, Huang TF. Antithrombotic effect of crotalin, a platelet membrane glycoprotein Ib antagonist from venom of Crotalus atrox. Blood. 1998;91(5):1582-1589. 110. Basani RB, D'Andrea G, Mitra N, et al. RGD-containing peptides inhibit fibrinogen binding to platelet alpha(IIb)beta3 by inducing an allosteric change in the amino-terminal portion of alpha(IIb). J Biol Chem. 2001;276(17):13975-13981. 111. Berkowitz SD, Harrington RA, Rund MM, Tcheng JE. Acute profound thrombocytopenia after C7E3 Fab (abciximab) therapy. Circulation. 1997;95(4):809-813. 112. Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH. Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol. 1986;124(2):324-334. 113. Nieswandt B, Moser M, Pleines I, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med. 2007;204(13):3113-3118. 114. Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the Platelet Membrane Glycoprotein-Iib-Iiia Complex during Platelet Activation. Journal of Biological Chemistry. 1985;260(20):1107-1114. 115. Fan X, Shi P, Dai J, et al. Paired immunoglobulin-like receptor B regulates platelet activation. Blood. 2014;124(15):2421-2430. 116. Merten M, Thiagarajan P. P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation. 2000;102(16):1931-1936. 117. Leytin V, Mody M, Semple JW, Garvey B, Freedman J. Quantification of platelet activation status by analyzing P-selectin expression. Biochem Biophys Res Commun. 2000;273(2):565-570. 118. Deng M, Lu Z, Zheng J, et al. A motif in LILRB2 critical for Angptl2 binding and activation. Blood. 2014;124(6):924-935. 119. Du X. Self-control of platelets: a new ITIM story. Blood. 2014;124(15):2322-2323. 120. Smith JW, Steinhubl SR, Lincoff AM, et al. Rapid platelet-function assay: an automated and quantitative cartridge-based method. Circulation. 1999;99(5):620-625. 121. Mehrbod M, Trisno S, Mofrad MR. On the activation of integrin alphaIIbbeta3: outside-in and inside-out pathways. Biophys J. 2013;105(6):1304-1315. 122. Petrich BG, Marchese P, Ruggeri ZM, et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med. 2007;204(13):3103-3111. 123. Senn H, Klaus W. The Nuclear-Magnetic-Resonance Solution Structure of Flavoridin, an Antagonist of the Platelet Gp-Iib-Iiia Receptor. Journal of Molecular Biology. 1993;232(3):907-925. 124. Coller BS. Interaction of Normal, Thrombasthenic, and Bernard-Soulier Platelets with Immobilized Fibrinogen - Defective Platelet-Fibrinogen Interaction in Thrombasthenia. Blood. 1980;55(2):169-178. 125. Ugarova TP, Budzynski AZ, Shattil SJ, Ruggeri ZM, Ginsberg MH, Plow EF. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIb-IIIa. J Biol Chem. 1993;268(28):21080-21087. 126. Li J, Vootukuri S, Shang Y, et al. RUC-4: a novel alphaIIbbeta3 antagonist for prehospital therapy of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34(10):2321-2329. 127. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214-221. 128. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451-1458. 129. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release. 2005;103(3):609-624. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20679 | - |
| dc.description.abstract | 臨床上αIIbβ3拮抗劑(如Abciximab、Eptifibatide和Tirofiban)廣泛應用於各種冠狀動脈候群(ACS)以防止血小板凝集和血栓形成,尤其是在急性心肌梗塞(AMI)病患進行冠狀動脈血管造形術(PTCA)時預防血小板凝集和血栓生成。然而,此類藥物結合後除了阻斷受體,同時也會造成受體結構改變,產生新的結合位置,能和病人內生性的抗體結合,進一步透過另一個受體FcγRIIA(CD32)活化血小板產生凝集並快速消耗病人體內血小板,而造成出血和血小板低下等副作用;另一方面此類藥物更抑制由talin所調控的Integrin outside-in signaling,此訊息傳遞路徑與正常生理止血功能有直接關係,這也是臨床上併發出血和thrombocytopenia等副作用的原因,使得藥物在使用上的侷限與困擾。
在本篇研究中,我們由龜殼花蛇毒純化得到兩種抗黏著蛋白TMV-2和TMV-7,兩者序列中皆含有Arg-Gly-Asp,其中TMV-7賦有獨特的結合方式不同於TMV-2以及臨床用藥Abciximab,TMV-7藉由結合到αIIb β-propeller domain不僅不會造成αIIbβ3受體活化而造成結構改變,也發現TMV-7與專一性αIIbβ3抗體-AP2在血小板製備中不會引發FcγRIIA所調控的血小板凝集與下游訊息傳遞路徑。另一方面TMV-7也能專一性地抑制Gα13所調控的outside-in signaling,而不影響talin所調控的inside-out signaling。基於此特性,TMV-7相對於TMV-2和Abciximab,較不影響正常生理止血,過程包含由talin所調控之初期inside-out signaling以及後期的clot retraction。在動物實驗中,TMV-2與TMV-7皆能有效地預防老鼠頸動脈以及腸繫膜中血栓的生成;但相較於TMV-2與臨床用藥eptifibatide會造成FcγRIIA基因轉入老鼠血小板數量低下而出現嚴重出血反應,TMV-7不僅不會造成老鼠血小板低下與出血時間延長,也不會影響人類全血之凝血指標。由此我們認為TMV-7與TMV-2及其他αIIbβ3拮抗劑作用於αIIbβ3不同之處可利於新一代αIIbβ3拮抗劑的研發。 我們更進一步以TMV-7 sequence當成模板,將RGD-domain中的ARGDNP點突變,改進為等電點(pI)較高的AKGDRR,衍生物RR有效地提高抑制血小板活化的效能 (inhibitory potency of platelet aggregation)至兩倍以上;在安全性方面,目前在抑制血小板凝集的IC50 (half maximal inhibitory concentration) 之1300倍劑量下仍沒有觀察到出血傾向,顯著地優化於TMV-7,將用藥安全性提升至60~70倍以上甚至更高。我們探究RR不造成出血副作用的機轉,發現其抑制血栓的作用機轉與TMV-7相同,兩者與一般蛇毒抗血栓Disintegrin不同之處為—兩拮抗劑結合到Integrin αIIbβ3皆不會造成αIIbβ3受體活化;另一方面TMV-7及RR作用 Integrin αIIbβ3皆不會影響由Talin所調控的Integrin inside-out signaling,故在使用上不影響正常生理止血功能。因此在動物活體實驗中,TMV-7及RR可有效抑制動脈血栓之產生,但有別於臨床用藥Abciximab、Eptifibatide及Tirofiban,即使投予高劑量仍不會造成出血時間延長,俱有較高的用藥安全性。 TMV-7及RR能專一性地抑制血小板凝集反應並抑制血栓生成,並解決目前抗血栓用藥存在出血風險的問題。目前亦進行化學修飾(PEGylation)以利後續發展成較穩定和長效或衍生小分子藥物之製劑,且同時進行大型動物體內試驗,以改善目前抗血栓藥物僅有靜脈注射製劑而尚未出現口服劑型以供長期使用。 | zh_TW |
| dc.description.abstract | The life-threatening thrombocytopenia, a common side effect of clinically available αIIbβ3 antagonists (e.g. abciximab, eptifibatide, and tirofiban), is associated with drug-dependent antibodies that recognize conformation-altered integrin αIIbβ3. Therefore, development of new antagonists with less tendency in causing bleeding is highly warranted.
In these reports, we found that two disintegrins, TMV-2 and TMV-7, purified from snake venom of Trimeresurus mucrosquamatus, exhibit different antithrombotic properties. TMV-7 endows with a binding motif toward αIIb β-propeller domain of αIIbβ3, different from that of TMV-2, with advantages in that TMV-7 neither primed the platelets to bind ligand nor caused conformational change of αIIbβ3 identified by ligand-induced binding site (LIBS) mAb AP5. In contrast to eptifibatide and TMV-2, co-treatment of TMV-7 with AP2 did not induce FcγRIIa-mediated platelet aggregation and downstream activation cascade. Both TMV-2 and TMV-7 efficaciously prevented occlusive thrombosis in vivo. Notably, either eptifibatide or TMV-2 caused severe thrombocytopenia mediated by FcγRIIa, prolonged tail bleeding time in vivo, and repressed human whole blood coagulation-indexes, whereas TMV-7 did not impair the hemostatic capacity. These findings highlight the αIIbβ3 antagonist TMV-7 with minimal conformational effects may potentially help resolve the major problem associated with the current integrin antagonists that at doses where they exhibit high potency they also increase the risk of hemorrhage. Emerging evidence suggests that selective inhibition of outside-in signaling has the potential to have potent antithrombotic effects without causing bleeding. Our study also reveals that TMV-7 exhibits different binding epitope of αIIbβ3 from that of 7E3 and TMV-2, with advantages in that TMV-7 selectively inhibits Gα13 binding to integrin β3 without inhibiting talin binding to β3 in human and mouse platelets. Furthermore, TMV-2 and TMV-7 diminished activation of protein kinase c-Src and stimulated RhoA, consequently inhibiting platelet spreading. TMV-2 inhibited thrombin-induced clot retraction of platelet-rich plasma whereas TMV-7 did not. Notably, TMV-2 significantly prolonged the tail bleeding time and suppressed coagulation indexes as monitored by thromboelastography while TMV-7 did not as they were administered at efficacious antithrombotic doses. The study identifies the lead αIIbβ3 antagonist TMV-7 with unique binding epitopes efficaciously prevents thrombosis without affecting physiological hemostasis. In order to design an optimal anti-thrombotic agent with better safety profile, we mutated the RGD-domain of trimucrin from ARGDNP to AKGDRR, and found that this trimucrin AKGDRR mutant (RR) exhibits higher potency in inhibiting platelet aggregation and its safety index is raised to 70-time higher than TMV-7. RR prevented thrombosis by a mechanism similar to TMV-7 that decelerates αIIbβ3 ligation without causing conformational change and inducing little exposure of LIBs epitope on αIIbβ3, thus RR does not trigger FcγRII-mediated platelet aggregation. Furthermore, RR selectively inhibits Gα13-binding without affecting talin-binding to β3 in human thrombin-activated platelets. At efficacious antithrombotic doses, both TMV-7 and RR had little effect on tail-bleeding time even given at higher dose (i.e., 2.5 μg/g, 20-fold higher), indicating that they are efficacious antithrombotic αIIbβ3 antagonists with a greater safety profile than the current αIIbβ3 antagonists. Further examining the molecular interaction between TMV-7 and its derivative may provide valuable information for development of new anti-thrombotic with a better safety profile. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:58:19Z (GMT). No. of bitstreams: 1 ntu-106-D01443001-1.pdf: 8458055 bytes, checksum: c448e2e6047ef6f1d3cfcd4194986d06 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 ........................................................................................................................................ I
中文摘要 ............................................................................................................................... II Abstract ............................................................................................................................... IV Content .............................................................................................................................. VII Figures ............................................................................................................................. VIII Tables ................................................................................................................................... XI Abbreviation ..................................................................................................................... XII Chapter 1 ............................................................................................................................... 1 Introduction .............................................................................................................................. 1 Chapter 2 ............................................................................................................................. 24 An αIIbβ3 antagonist prevents thrombosis without causing FcγRIIa-mediated thrombocytopenia ................................................................................................................ 24 Chapter 3 ............................................................................................................................. 75 Anti-thrombotic disintegrins from snake venom as selective inhibitors of platelet αIIbβ3 outside-in signaling……...........................……………...……..75 Chapter 4 ........................................................................................................................... 141 Perspectives .......................................................................................................................... 141 References.......................................................................................................................... 143 Appendix ........................................................................................................................... 164 | |
| dc.language.iso | zh-TW | |
| dc.subject | 醣蛋白αIIbβ3 | zh_TW |
| dc.subject | 出血副作用 | zh_TW |
| dc.subject | 血小板減少症 | zh_TW |
| dc.subject | 血栓 | zh_TW |
| dc.subject | 雙向訊號傳遞 | zh_TW |
| dc.subject | 結合位置 | zh_TW |
| dc.subject | 抗黏著蛋白 | zh_TW |
| dc.subject | 血小板 | zh_TW |
| dc.subject | bi-directional signaling | en |
| dc.subject | bleeding | en |
| dc.subject | thrombocytopenia | en |
| dc.subject | Platelets | en |
| dc.subject | integrin αIIbβ3 | en |
| dc.subject | disintegrin | en |
| dc.subject | binding sites | en |
| dc.subject | thrombosis | en |
| dc.title | 血小板αIIbβ3 拮抗劑 TMV-7 與其衍生物之抗血栓作用和低出血風險 | zh_TW |
| dc.title | The novel αIIbβ3 antagonist TMV-7 and its derivative RR prevent thrombosis without increasing bleeding risk | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄧哲明(Che-Ming Teng),顏茂雄(Mao-Hsiung Yen),莊偉哲(Woei-Jer, Chuang),吳文彬(Wen-Bin, Wu) | |
| dc.subject.keyword | 血小板,醣蛋白αIIbβ3,抗黏著蛋白,結合位置,雙向訊號傳遞,血栓,血小板減少症,出血副作用, | zh_TW |
| dc.subject.keyword | Platelets,integrin αIIbβ3,disintegrin,binding sites,bi-directional signaling,thrombosis,thrombocytopenia,bleeding, | en |
| dc.relation.page | 164 | |
| dc.identifier.doi | 10.6342/NTU201702177 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 8.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
