請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | Yu-Yang Liao | en |
| dc.contributor.author | 廖昱揚 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:57:14Z | - |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-31 | |
| dc.identifier.citation | [1] E. Yablonovitch, 'Inhibited spontaneous emission in solid-state physics and electronics,' Physical review letters, vol. 58, no. 20, p. 2059, 1987.
[2] S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Physical review letters, vol. 58, no. 23, p. 2486, 1987. [3] A. Metherell and R. Fisher, 'Consequences of Bloch's theorem on the dynamical theory of electron diffraction contrast,' physica status solidi (b), vol. 32, no. 2, pp. 551-562, 1969. [4] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light. Princeton university press, 2011. [5] K. Sakoda, Optical properties of photonic crystals. Springer Science & Business Media, 2004. [6] M. S. M. Esmail, 'BAND STRUCTURE OF SOME PHOTONIC CRYSTALS,' Faculty of Science (Girls), Al-Azhar University, 2012. [7] N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, 'Photonic-crystal waveguide biosensor,' Optics Express, vol. 15, no. 6, pp. 3169-3176, 2007. [8] D. Rosenblatt, A. Sharon, and A. A. Friesem, 'Resonant grating waveguide structures,' IEEE Journal of Quantum electronics, vol. 33, no. 11, pp. 2038-2059, 1997. [9] S. Weiss, 'Fluorescence spectroscopy of single biomolecules,' Science, vol. 283, no. 5408, pp. 1676-1683, 1999. [10] V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, 'A porous silicon-based optical interferometric biosensor,' Science, vol. 278, no. 5339, pp. 840-843, 1997. [11] L. Rindorf and O. Bang, 'Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,' JOSA B, vol. 25, no. 3, pp. 310-324, 2008. [12] B. Liedberg, I. Lundström, and E. Stenberg, 'Principles of biosensing with an extended coupling matrix and surface plasmon resonance,' Sensors and Actuators B: Chemical, vol. 11, no. 1-3, pp. 63-72, 1993. [13] J. Mitchell, 'Small molecule immunosensing using surface plasmon resonance,' Sensors, vol. 10, no. 8, pp. 7323-7346, 2010. [14] F.-l. Hsiao and C. Lee, 'Computational study of photonic crystals nano-ring resonator for biochemical sensing,' IEEE Sensors Journal, vol. 10, no. 7, pp. 1185-1191, 2010. [15] D. Cullen, R. Brown, and C. Lowe, 'Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,' Biosensors, vol. 3, no. 4, pp. 211-225, 1987. [16] T. Kouno, M. Sakai, K. Kishino, and K. Hara, 'Sensing operations based on hexagonal GaN microdisks acting as whispering-gallery mode optical microcavities,' Optics letters, vol. 40, no. 12, pp. 2866-2869, 2015. [17] N. Miri and M. Mohammadzaheri, 'Optical sensing using microspheres with different size and material,' IEEE Sensors Journal, vol. 14, no. 10, pp. 3593-3598, 2014. [18] H. Wang and K.-Q. Zhang, 'Photonic crystal structures with tunable structure color as colorimetric sensors,' Sensors, vol. 13, no. 4, pp. 4192-4213, 2013. [19] Y. Zhao, X. Zhao, and Z. Gu, 'Photonic crystals in bioassays,' Advanced Functional Materials, vol. 20, no. 18, pp. 2970-2988, 2010. [20] E. Choi, Y. Choi, Y. H. P. Nejad, K. Shin, and J. Park, 'Label-free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals,' Sensors and Actuators B: Chemical, vol. 180, pp. 107-113, 2013. [21] M. Jory, P. Vukusic, and J. Sambles, 'Development of a prototype gas sensor using surface plasmon resonance on gratings,' Sensors and Actuators B: Chemical, vol. 17, no. 3, pp. 203-209, 1994. [22] T. Koschinsky and L. Heinemann, 'Sensors for glucose monitoring: technical and clinical aspects,' Diabetes/metabolism research and reviews, vol. 17, no. 2, pp. 113-123, 2001. [23] G. Ye and X. Wang, 'Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups,' Biosensors and Bioelectronics, vol. 26, no. 2, pp. 772-777, 2010. [24] M. M. Ward Muscatello, L. E. Stunja, and S. A. Asher, 'Polymerized crystalline colloidal array sensing of high glucose concentrations,' Analytical chemistry, vol. 81, no. 12, pp. 4978-4986, 2009. [25] J. Li, D.-f. Lu, Z. Zhang, Q. Liu, and Z.-m. Qi, 'Hierarchical mesoporous silica film modified near infrared SPR sensor with high sensitivities to small and large molecules,' Sensors and Actuators B: Chemical, vol. 203, pp. 690-696, 2014. [26] C. P. Price, A. S. John, and J. M. Hicks, Point-of-care testing. AACC Press Washington, DC, 2004. [27] P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, 'Surface plasmon resonance chemical sensing on cell phones,' Angewandte Chemie, vol. 124, no. 46, pp. 11753-11756, 2012. [28] D. Gallegos et al., 'Label-free biodetection using a smartphone,' Lab on a Chip, vol. 13, no. 11, pp. 2124-2132, 2013. [29] A. Rico-Yuste, V. González-Vallejo, E. Benito-Peña, T. s. de las Casas Engel, G. Orellana, and M. C. Moreno-Bondi, 'Furfural Determination with Disposable Polymer Films and Smartphone-Based Colorimetry for Beer Freshness Assessment,' Analytical chemistry, vol. 88, no. 7, pp. 3959-3966, 2016. [30] E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes. Wiley Online Library, 2005. [31] M. R. Krames et al., 'Status and future of high-power light-emitting diodes for solid-state lighting,' Journal of display technology, vol. 3, no. 2, pp. 160-175, 2007. [32] G. J. Kost, 'Guidelines for point-of-care testing. Improving patient outcomes,' American journal of clinical pathology, vol. 104, no. 4 Suppl 1, pp. S111-27, 1995. [33] D. Dey and T. Goswami, 'Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication,' BioMed Research International, vol. 2011, 2011. [34] B. Maeng, Y. Park, and J. Park, 'Direct label-free detection of Rotavirus using a hydrogel based nanoporous photonic crystal,' RSC Advances, vol. 6, no. 9, pp. 7384-7390, 2016. [35] C. F. Woolley and M. A. Hayes, 'Emerging technologies for biomedical analysis,' Analyst, vol. 139, no. 10, pp. 2277-2288, 2014. [36] D. Zhang and Q. Liu, 'Biosensors and bioelectronics on smartphone for portable biochemical detection,' Biosensors and Bioelectronics, vol. 75, pp. 273-284, 2016. [37] W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, 'Nano/Microfluidics for diagnosis of infectious diseases in developing countries,' Advanced drug delivery reviews, vol. 62, no. 4, pp. 449-457, 2010. [38] Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, 'Experimental observation of an extremely dark material made by a low-density nanotube array,' Nano letters, vol. 8, no. 2, pp. 446-451, 2008. [39] C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, 'Photonic crystal LEDs–designing light extraction,' Laser & Photonics Reviews, vol. 3, no. 3, pp. 262-286, 2009. [40] Y.-L. Yeh, 'Real-time measurement of glucose concentration and average refractive index using a laser interferometer,' Optics and Lasers in Engineering, vol. 46, no. 9, pp. 666-670, 2008. [41] L. Liu, Z. Xu, L. Dong, and M. Lu, 'Angular spectrum detection instrument for label-free photonic crystal sensors,' Optics letters, vol. 39, no. 9, pp. 2751-2754, 2014. [42] N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, 'Distance dependence of fluorescence enhancement from photonic crystal surfaces,' Journal of Applied Physics, vol. 103, no. 8, p. 083104, 2008. [43] S.-F. Lin et al., 'Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,' Optics express, vol. 20, no. 13, pp. 14584-14595, 2012. [44] A. Go, D. Mozaffarian, and V. Roger, 'Sugar-sweetened beverages initiatives can help fight childhood obesity,' Circulation, vol. 127, pp. e6-e245, 2013. [45] E. E. Ventura, J. N. Davis, and M. I. Goran, 'Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content,' Obesity, vol. 19, no. 4, pp. 868-874, 2011. [46] B. Troia, A. Paolicelli, F. De Leonardis, and V. M. Passaro, 'Photonic crystals for optical sensing: A review,' in Advances in Photonic Crystals: InTech, 2013. [47] M. Scullion, A. Di Falco, and T. Krauss, 'Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,' Biosensors and Bioelectronics, vol. 27, no. 1, pp. 101-105, 2011. [48] K. Srinivasan and O. Painter, 'Momentum space design of high-Q photonic crystal optical cavities,' Optics Express, vol. 10, no. 15, pp. 670-684, 2002. [49] L. OK Biotech Co. OKMETER Direct blood glucose monitoring system. Available: http://www.okbiotech.com/en/2-2603-67809/product/OKmeter-Direct-Blood-Glucose-Monitoring-System-Blood-Glucose-Meter-id372280.htm | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20655 | - |
| dc.description.abstract | 本篇論文包含兩部份的研究,第一部分是使用氮化鎵發光二極體及二維光子晶體發光二極體作為光源來建構葡萄糖量測系統。第二部分是利用二維光子晶體的繞射機制作為生物感測器來偵測葡萄糖濃度。
近年來物聯網在消費性電子產品中相當熱門,智慧健康照護以及床邊檢測的應用因具有提前預防並遠離疾病的優點,也越來越受重視。生物感測系統結合智慧型手機的研究逐漸蓬勃發展。第一個部分使用兩種光源包含氮化鎵發光二極體以及二維光子晶體發光二極體,製作出一個快速且準確的量測平台來偵測葡萄糖濃度。光的行進方向經過不同折射係數的介質後,產生類似稜鏡的折射,折射光的角度可以對應到葡萄糖濃度的變化。我們量測系統的靈敏度能使每單位折射率產生122°的折射角度變化,且角度與濃度變化呈現很好的線性關係,重複性的測試結果也顯示了量測系統具相當好的穩定性。最後提出了將量測系統結合於智慧型手機的概念,並模擬測試含糖飲料的糖度檢測。 傳統繞射光柵感測器的靈敏度被空間解析度所限制,因此需要較大的空間去改善感測器的解析度。在此篇研究中,我們展示了一個具有高靈敏度、微型量測系統的二維光子晶體生物感測器,光子晶體在空間中將光束衍射到不同的角度,利用位於滿足相位匹配條件與成為消逝波之間的臨界波長來判別施加在感測器表面介質的折射率。使用葡萄糖作為待測物,我們的感測器呈現了相當高的敏感度以及低量測極限,量測系統的靈敏度能使每單位折射率產生3091奈米的波長變化,且最低葡萄糖解析濃度達到0.1mM,結果顯示了我們的生物感測器可以用來偵測臨床糖尿病患者的血糖含量。此部分研究展示了使用二維光子晶體的繞射機制來發展小尺寸的感測器是相當具有潛力的。 | zh_TW |
| dc.description.abstract | This thesis contains two research projects. First, we combined a Gallium Nitride (GaN)-based light-emitting diode (LED) and a photonic crystal (PhC) LED into the detection system to construct a glucose-sensing platform. Second, a PhC biosensor is used to detect glucose concentrations based on the optical diffraction properties from 2-dimensional PhC.
Internet of things (IoT) is a popular topic in current consumer electronics. Developing smart health care and the point-of-care testing (POCT) application are also getting more and more attention because of the potential to keep humans away from diseases. Biosensor combined with the smartphone has been a popular research topic. In this part of the research, we show a simple yet accurate detection platform using two kinds of light sources including a GaN-based LED and a PhC LED for glucose-sensing. Radiation profiles with light propagation following a prism-like double diffraction path were characterized. Our system shows a bulk refractometric sensitivity as high as 122.73°/ refractive index unit (RIU) with very good linearity. The repeatability test also shows a nice stability of the system. At last, we proposed a portable detection system model and the glucose content in sugar-sweetened beverages was taken into consideration. Our approach demonstrates the potential of portable glucose detection. The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution. Thus a large space is required in order to improve sensor performance. In this part of the research, we demonstrate a hexagonal PhC biosensor with high sensitivity and a compact measurement range. The PhCs are able to diffract optical beams to various angles in the azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent is employed to benchmark the refractive index of the material applied to the sensor. Using glucose solution as the analyte, our sensor demonstrates very high sensitivity and low limits of detection (LOD). The sensitivity of our measurement system is calculated to be 3091 nm/RIU and the LOD is 0.1mM. The result shows our sensor is capable of detecting clinical cut-off blood sugar for Diabetes patients. It shows the diffraction mechanism from the hexagonal PhCs can be used for sensors when the compact size is a concern. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:57:14Z (GMT). No. of bitstreams: 1 ntu-106-R04941046-1.pdf: 5492860 bytes, checksum: 001293e5cb3f1065b2d420f5ed73d6b9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
謝誌 i 摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Background 1 1.1.1 General review of photonic crystals 1 1.1.2 Biomaterial detection technologies 2 1.1.3 Portable detection systems 5 1.2 Motivation 8 1.3 Thesis Structure 10 Chapter 2 Application of LEDs for glucose-sensing 11 2.1 Preface 11 2.2 Device fabrication and measurement 12 2.2.1 Fabrication of planar GaN-based LED 12 2.2.2 Fabrication of photonic crystal GaN-based LED 14 2.2.3 Measurement setup for glucose detection 16 2.3 Results and discussion 18 2.3.1 Electro-optical characteristics of the planar GaN-based LED and the PhC LED 18 2.3.2 Glucose detection using planar GaN-based LED 20 2.3.3 Detection using a photonic crystal GaN-based LED light source 23 2.3.4 Repeatability of the measurement system 25 2.3.5 Application of the prototype model of the glucose sensor to the portable detection system 26 2.4 Summary 30 Chapter 3 Label-free Photonic Crystal Biosensors for Glucose Detection 31 3.1 Preface 31 3.2 Device fabrication and measurement setup 33 3.2.1 Design and fabrication of the hexagonal 2D photonic crystal 33 3.2.2 Measurement setup 33 3.3 Results and discussion 35 3.3.1 Optical behavior of the hexagonal PhC 35 3.3.2 Principle of PhC sensing 41 3.3.3 Cut-off wavelength measurement and data acquisition 42 3.3.4 Detection limit and sensitivity 43 3.3.5 Repeatability of the measurement system 45 3.4 Summary 47 Chapter 4 Conclusion 48 Reference 50 | |
| dc.language.iso | en | |
| dc.subject | 二維光子晶體 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 免標籤光學生物感測器 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 葡萄糖量測 | zh_TW |
| dc.subject | label-free optical biosensor | en |
| dc.subject | light-emitting diode (LED) | en |
| dc.subject | glucose-sensing | en |
| dc.subject | Gallium nitride (GaN) | en |
| dc.subject | hexagonal photonic crystals | en |
| dc.title | 以光子晶體生物感測器偵測葡萄糖 | zh_TW |
| dc.title | Photonic Crystal Biosensors for Glucose Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧廷昌,吳育任,李翔傑 | |
| dc.subject.keyword | 氮化鎵,發光二極體,二維光子晶體,葡萄糖量測,免標籤光學生物感測器, | zh_TW |
| dc.subject.keyword | Gallium nitride (GaN),light-emitting diode (LED),hexagonal photonic crystals,glucose-sensing,label-free optical biosensor, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201702345 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
