請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20641完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Wei-Cheng Liao | en |
| dc.contributor.author | 廖偉程 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:56:37Z | - |
| dc.date.copyright | 2017-08-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-01 | |
| dc.identifier.citation | 1. Sun, T.-M.; Wang, C.-S.; Liao, C.-S.; Lin, S.-Y.; Perumal, P.; Chiang, C.-W.; Chen, Y.-F., Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano 2015, 9, 12436-12441.
2. Liao, Y. M.; Lai, Y. C.; Perumal, P.; Liao, W. C.; Chang, C. Y.; Liao, C. S.; Lin, S. Y.; Chen, Y. F., Highly Stretchable Label‐like Random Laser on Universal Substrates. Adv. Mater. Tech. 2016, 1. 3. Wang, C. S.; Nieh, C. H.; Lin, T. Y.; Chen, Y. F., Electrically Driven Random Laser Memory. Adv. Funct. Mater. 2015, 25, 4058-4063. 4. Redding, B.; Choma, M. A.; Cao, H., Speckle-free laser imaging using random laser illumination. Nature photonics 2012, 6, 355-359. 5. Polson, R. C.; Vardeny, Z. V., Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289-1291. 6. Luan, F.; Gu, B.; Gomes, A. S.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in nanocomposite random media. Nano Today 2015, 10, 168-192. 7. Wiersma, D. S., The physics and applications of random lasers. Nat. Phys. 2008, 4, 359-367. 8. Wiersma, D. S.; Cavalieri, S., Light emission: A temperature-tunable random laser. Nature 2001, 414, 708-709. 9. Sznitko, L.; Cyprych, K.; Szukalski, A.; Miniewicz, A.; Mysliwiec, J., Coherent–incoherent random lasing based on nano-rubbing induced cavities. Laser Physics Letters 2014, 11, 045801. 10. Dice, G.; Mujumdar, S.; Elezzabi, A., Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett. 2005, 86, 131105. 11. Popov, O.; Zilbershtein, A.; Davidov, D., Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength. Appl. Phys. Lett. 2006, 89, 191116. 12. Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L., Random laser based on waveguided plasmonic gain channels. Nano Lett. 2011, 11, 4295-4298. 13. Meng, X.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K., Plasmonically Controlled Lasing Resonance with Metallic− Dielectric Core− Shell Nanoparticles. Nano Lett. 2011, 11, 1374-1378. 14. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737. 15. Shen, J.; Zhu, Y.; Yang, X.; Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686-3699. 16. Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R., Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546-18551. 17. Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P., Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308-11309. 18. Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M., Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110-18114. 19. Li, Q.; Ohulchanskyy, T. Y.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N., Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062-12068. 20. Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y., Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695-6697. 21. Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628. 22. Guo, D.-Y.; Shan, C.-X.; Liu, K.-K.; Lou, Q.; Shen, D.-Z., Surface plasmon effect of carbon nanodots. Nanoscale 2015, 7, 18908-18913. 23. Pan, D.; Guo, L.; Zhang, J.; Xi, C.; Xue, Q.; Huang, H.; Li, J.; Zhang, Z.; Yu, W.; Chen, Z., Cutting sp 2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314-3318. 24. Liu, H.; Ye, T.; Mao, C., Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473-6475. 25. Smuk, A.; Lazaro, E.; Olson, L. P.; Lawandy, N., Random laser action in bovine semen. Opt. Commun. 2011, 284, 1257-1258. 26. Wang, Z.; Shi, X.; Wei, S.; Sun, Y.; Wang, Y.; Zhou, J.; Shi, J.; Liu, D., Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Physics Letters 2014, 11, 095002. 27. Jewett, S. A.; Makowski, M. S.; Andrews, B.; Manfra, M. J.; Ivanisevic, A., Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater. 2012, 8, 728-733. 28. Perumal, P.; Wang, C.; Boopathi, K. M.; Haider, G.; Liao, W.-C.; Chen, Y.-F., Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics 2016. 29. Ding, J.; Hagerott, M.; Ishihara, T.; Jeon, H.; Nurmikko, A., (Zn, Cd) Se/ZnSe quantum-well lasers: excitonic gain in an inhomogeneously broadened quasi-two-dimensional system. Phys. Rev. B 1993, 47, 10528. 30. Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A., Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335-339. 31. Wiersma, D. S.; Lagendijk, A., Light diffusion with gain and random lasers. Phys. Rev. E 1996, 54, 4256. 32. Cao, H.; Zhao, Y.; Ho, S.; Seelig, E.; Wang, Q. H.; Chang, R. P., Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278. 33. Mujumdar, S., Quantification of lineshape fluctuations in coherent random lasers. SPIE Newsroom 2010. 34. Weng, T.-M.; Chang, T.-H.; Lu, C.-P.; Lu, M.-L.; Chen, J.-Y.; Cheng, S.-H.; Nieh, C.-H.; Chen, Y.-F., Mode control of random laser action assisted by whispering-gallery-mode resonance. ACS Photonics 2014, 1, 1258-1263. 35. Ling, Y.; Cao, H.; Burin, A.; Ratner, M. A.; Liu, X.; Chang, R. P., Investigation of random lasers with resonant feedback. Phys. Rev. A 2001, 64, 063808. 36. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308. 37. Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S.-H.; Ahn, K. J., Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403. 38. Yang, N.; Swain, G. M.; Jiang, X., Nanocarbon electrochemistry and electroanalysis: current status and future perspectives. Electroanalysis 2016, 28, 27-34. 39. Cheng, S.-H.; Yeh, Y.-C.; Lu, M.-L.; Chen, C.-W.; Chen, Y.-F., Enhancement of laser action in ZnO nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes. Opt. Express 2012, 20, A799-A805. 40. Liu, Y.; Willis, R. F., Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 2010, 81, 081406. 41. Hwang, E.; Sarma, S. D., Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 2007, 75, 205418. 42. Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H. A.; Liang, X.; Zettl, A.; Shen, Y. R., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630-634. 43. Koppens, F. H.; Chang, D. E.; Garcia de Abajo, F. J., Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370-3377. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20641 | - |
| dc.description.abstract | 碳奈米點(或是碳量子點)在近幾年成為熱門的研究材料,並且在生物以及光伏領域等取得廣泛的應用。雷射是生活中隨處可見的重要光電元件,然而迄今仍然缺乏碳量子點在雷射方面重要的應用。因此,在這篇論文中,我們藉由碳奈米點在2015年被發現的表面電漿性質的輔助,產生可以控制的隨機雷射訊號。蒐集燃燒蠟燭灰並分離產生的碳奈米點具有類似石墨烯的sp2鍵結結構,將少量的碳奈米點隨機裝飾在氮化鎵奈米柱的表面,藉此增強了氮化鎵的紫外輻射並產生了具有同調性的隨機雷射的訊號。除此之外,我們藉由改變碳奈米點的數量實現了雷射光學回饋以及雷射閾值的可調控性。這些可調控性對於光電元件的應用上非常重要。這個研究成果,不僅提供了利用表面電漿快速且簡單的控制隨機雷射的方法,也讓碳奈米點找到了在光電領域當中更廣泛的應用方法。 | zh_TW |
| dc.description.abstract | Carbon nanodots emerge as popular materials in various research fields, including biological and photovoltaic areas, while there lacks significant reports related to their applications in laser devices, which play a significant role in our daily life. In this work, we demonstrate the first controllable random laser assisted by the surface plasmon effect of carbon nanodots. Briefly, carbon nanodots derived from candle soot are randomly deposited on the surface of gallium nitride (GaN) nanorods to enhance the ultraviolet fluorescence of GaN and generate plasmonically enhanced random laser action with coherent feedback. Furthermore, potentially useful functionalities of tunable lasing threshold and controllable optical modes are achieved by adjusting the numbers of carbon nanodots, enabling for optical communication and identification technologies. In addition to providing an efficient alternative for plasmonically enahnced random laser devices with simple fabrication and low cost, our work also paves a useful route for the application of environmentally friendly carbon nanodots in optoelectronic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:56:37Z (GMT). No. of bitstreams: 1 ntu-106-R04222047-1.pdf: 2292464 bytes, checksum: f60b71b1014784ba9820d836f27fd2ce (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV List of Publication V Contents VIII List of Figures IX Figure of chapter 1 IX Figure of chapter 2 IX Figure of chapter 3 X Figure of chapter 4 X Chapter1 Introduction 1 Reference 5 Chapter 2 Theoretical Background 8 2.1 Semiconductors 8 2.2 Radiative Recombination 11 2.3 Surface Plasmon Resonance (SPR) 14 2.4 Dispersion Relation of SPPs 16 2.5 Random Laser (RL) 20 2.6 Plasmonically Enhanced Random Lasers 23 2.7 Random laser threshold 24 Reference 25 Chapter 3 Experimental Details 27 3.1 Material Preparation and Device Fabrication 27 3.2 Measurement of Optical Characteristics 28 3.3 Scanning Electron Microscopy (SEM) 30 Reference 32 Chapter 4 Results and Dicussions 33 4.1 Material Characteristics 33 4.2 Manipulation of Random Lasing Spectral Coherence and Threshold 36 4.3 Investigation of C-dots Surface Plasmons 44 Reference 52 Chapter 5 Conclusion 54 | |
| dc.language.iso | en | |
| dc.title | 利用碳奈米點表面電漿控制隨機雷射 | zh_TW |
| dc.title | Manipulation of Random Lasers Assisted by Plasmonic Carbon Nanodots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林泰源(Tai-Yuan Lin),周涵怡(Han-Yi Chou) | |
| dc.subject.keyword | 隨機雷射,碳量子點,氮化鎵,表面電漿共振, | zh_TW |
| dc.subject.keyword | random lasers,carbon nanodots,gallium nitride nanorods,surface plasmon resonance, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201702308 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
