請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20628完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
| dc.contributor.author | Yi-Shiuan Tsai | en |
| dc.contributor.author | 蔡宜軒 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:56:03Z | - |
| dc.date.copyright | 2017-08-14 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-03 | |
| dc.identifier.citation | Jones KT, Ashrafi K. Caenorhabditis elegans as an emerging model for studying the basic biology of obesity. Dis Model Mech. 2009;2:224–229.
Mullaney BC, Ashrafi K. C. elegans fat storage and metabolic regulation. Biochim Biophys Acta. 2009;1791:474–478. Watts JL. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol Metab 2009 Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol. 2009;299:51–57. Reis AH Acidemia and blood free fatty acids: analysis of cardiovascular risk factors in a new context. Discov Med. 2017Mar;23(126):183-188. Brenner, 1974 ,S. Brenner The genetics of Caenorhabditis elegans Genetics, 77 (1974), pp. 71–94 Avery L, Shtonda BB. Food transport in the C. elegans pharynx. J Exp Biol. 2003;206:2441–2457. Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS genetics. 2009;5:e1000503. Shtonda BB, Avery L. Dietary choice behavior in Caenorhabditis elegans. J Exp Biol. 2006;209:89–102. Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 2009;23:496–511. Li X., Li X.D. Chemical proteomics approaches to examine novel histone posttranslational modifications. Curr. Opin. Chem. Biol. 2015;24:80–90 Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. Chi P., Allis C.D., Wang G.G. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer. 2010;10:457–469. 13.Lewis, J. A., and J. T. Fleming, 1995 Basic culture methods. Methods Cell Biol 48:3-29. CABREIRO F, AU C, LEUNG KY, VERGARA-IRIGARAY N, COCHEME HM, NOORI T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153(1):228-39. CHEN J, LI J, JIANG X, ROSEN BP. Conserved cysteine residues determine substrate specificity in a novel As(III) S-adenosylmethionine methyltransferase from Aspergillus fumigatus. Mol Microbiol. 2017;104(2):250-259. EBERLE D, HEGARTY B, BOSSARD P, FERRE P, FOUFELLE F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839-48. EHMKE. M, LUTHE. K, SCHNABEL. R, DHASHMI S, WANG Y, SUMAN DS, PARHAR RS, COLLISON K, CONCA W, et al. Human cancer: is it linked to dysfunctional lipid metabolism? Biochim Biophys Acta. 2015;1850(2):352-64. HOWARD BV, ROBBINS DC, SIEVERS ML, LEE ET, RHOADES D, DEVEREUX RB, et al. LDL Cholesterol as a Strong Predictor of Coronary Heart Disease in Diabetic Individuals With Insulin Resistance and Low LDL. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000. HUANG TF, CHO CY, CHENG YT, HUANG JW, WU YZ, YEH AY, et al. BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans. PLoS Genet. 2014;10(6):e1004428. HYUN M, KIM J, DUMUR C, SCHROEDER FC, YOU YJ. BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics. 2016;203(4):1721-32. JANSSENS S, CIAPAITE J, WOLTERS JC, VAN RIEL NA, NICOLAY K, PROMPERS JJ. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats. Nutrients. 2017;9(5). JOHNSON K, SHAPIRO-SHELEF M, TUNYAPLIN C, CALAME K. Regulatory events in early and late B-cell differentiation. Mol Immunol. 2005;42(7):749-61. KATOH Y, IKURA T, HOSHIKAWA Y, TASHIRO S, ITO T, OHTA M, et al. Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell. 2011;41(5):554-66. MACNEIL LT, WATSON E, ARDA HE, ZHU LJ, WALHOUT AJ. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell. 2013;153(1):240-52. MARTINA MINNICH, HIROMI TAGOH, PETER B, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature Immunology. 2015. MATO JM, MARTINEZ-CHANTAR ML, LU SC. Methionine metabolism and liver disease. Annu Rev Nutr. 2008;28:273-93. O'ROURKE EJ, SOUKAS AA, CARR CE, RUVKUN G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 2009;10(5):430-5. OBATA F, MIURA M. Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan. Nat Commun. 2015;6:8332. SINGH R, CUERVO AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:282041. SMITH BW, ADAMS LA. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci. 2011;48(3):97-113. TAMIYA H, HIROTA K, TAKAHASHI Y, DAITOKU H, KANEKO Y, SAKUTA G, et al. Conserved SAMS function in regulating egg-laying in C. elegans. J Recept Signal Transduct Res. 2013;33(1):56-62. VAN DIJK K, MARLEY KE, JEONG BR, XU J, HESSON J, CERNY RL, et al. Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in Chlamydomonas. Plant Cell. 2005;17(9):2439-53. WALKER AK, JACOBS RL, WATTS JL, ROTTIERS V, JIANG K, FINNEGAN DM, et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 2011;147(4):840-52. WATSON E, MACNEIL LT, ARDA HE, ZHU LJ, WALHOUT AJ. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell. 2013;153(1):253-66. WATSON E, MACNEIL LT, RITTER AD, YILMAZ LS, ROSEBROCK AP, CAUDY AA, et al. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell. 2014;156(4):759-70. YE C, SUTTER BM, WANG Y, KUANG Z, TU BP. A Metabolic Function for Phospholipid and Histone Methylation. Mol Cell. 2017;66(2):180-193 e8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20628 | - |
| dc.description.abstract | 脂肪代謝系統的異常與許多嚴重的疾病有關係,例如:肥胖症、心血管疾病及糖尿病。同時,脂肪的多寡在許多物種中對於生長發育也有一定程度的影響。雖然已經有許多關於脂肪代謝異常的問題的研究,但是飲食如何同時調控生長發育及改變脂肪代謝仍然未有進一步的解釋。在我的研究中,我們使用秀麗隱桿線蟲當作模式生物。我們餵食線蟲兩種不同的細菌--Comamonas DA1877 和 E. coli OP50,用以探討飲食如何去調控脂肪儲存及生長速度。先前研究發現當野生型線蟲(N2)餵食DA1877飲食時,會比餵食OP50這種標準食物脂肪含量來的少,並呈現生長加速現象。sams-1 是一個 合成S-adenosyl methionine (SAM)酵素。在我的研究中發現,當線蟲缺少sams-1後,雖然餵食DA1877或OP50,都會出現高脂肪含量及生長速度的減緩,且兩種食物的造成的效果差異不大,這使我們推測sams-1這個酵素應該參與在DA1877降低脂肪代謝和增加生長速度的途徑之中。為了瞭解這背後的機制,我們在缺乏sams-1的線蟲中補充其合成產物SAM,發現SAM的確會影響線蟲脂肪含量和生長速度,但是外SAM 並無法展現如同DA1877飲食的效果,因此我們推測sams-1在調控脂肪儲存和生長速度上,除了透過合成SAM外,應有另一條獨立於SAM合成的路徑。為了了解這個路徑,我們檢測SAMS-1基因究竟會表現在什麼位置。我們發現,在餵食兩種食物下,SAMS-1皆會表現在腸道(intestinal cells)及表皮細胞(hypodermal cells)中。尤其重要的是,SAMS-1會坐落在這些細胞的細胞核內。在哺乳類動物實驗上 SAMS-1的同源基因MAT II | zh_TW |
| dc.description.abstract | Lipid contents are essential for developmental processes in many species. Dysregulation of lipid metabolism has been associated with many severe diseases, like obesity, cardiac dysfunction, and diabetes mellitus. Although lipid metabolism has been extensively studied, the relationship between diets, lipid content and developmental rate remains largely unknown. In our studies, we used C. elegans as the model organism and fed them bacteria Comamonas DA1877 or E. coli OP50 to investigate how diets regulate lipid content and developmental rate. Previous studies have shown that wild type worms had lower lipid content and accelerated developmental rate on DA1877 than OP50 diet. sams-1 is a S-adenosyl methionine (SAM) synthase gene which is reported to regulate lipid content. Our data revealed that, sams-1 deficiency worms exhibited high lipid content and decreased developmental rate on both diets. To understand its underlying mechanism, we supply SAM for sams-1 mutants. Results showed that SAM supplement affected lipid content and developmental rate. However a SAM supplement level could not mimic DA1877-mediated lipid reduction and developmental rate acceleration, suggesting that sams-1 has a SAM-synthesis dependent and independent role in regulation of lipid reduction and developmental rate. To understand SAM-synthesis independent pathway, we observed the localization of SAMS-1. We found that SAMS-1 is expressed in the intestinal and hypodermal cells in both diets. Specifically, SAMS-1 is localized in the nucleus of these cells. In mammals, MAT II | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:56:03Z (GMT). No. of bitstreams: 1 ntu-106-R03B43026-1.pdf: 3231721 bytes, checksum: 0d5bfe75cc13f96219a2a6631000c545 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Table of contents
Abstract 8 Introduction 11 Materials and Methods 19 Caenorhabditis elegans Strains 19 Bacteria Strain and Culture Conditions 20 Diet Supplementation 20 The quantification of SAMS-1:: GFP expression 21 Caenorhabditis elegans Synchronization 22 Developmental Rate Assay 22 Statistical Analysis for Developmental Rate 23 Oil Red O Staining 23 Enlarged Bubble Phenotype Analysis 24 Oil Red O Staining Quantification 24 Western Blot Analysis 25 Results 27 sams-1 suppressed DA1877-mediated lipid reduction 27 sams-1 mutants showed more and enlarged lipid droplets on both diets 28 The expression of sams-1 is differentially regulated on different diets 29 sams-1 regulates the lipid content in a SAM synthesis-dependent and a SAM synthesis -independent manners on DA1877 diet 29 SAMS-1 is present in the nucleus of intestine and hypodermis 31 lin-53, set-2 or set-30 suppressed DA1877-mediated lipid reduction like sams-1 32 blmp-1(tm548); sams-1(ok3033) mutants displayed enlarged lipid droplets but low lipid content 33 sams-1 is required to accelerate developmental rate on both OP50 and DA1877 diets 35 SAM supplementation accelerates growth rate 36 sams-1 mediates developmental acceleration through SAM synthesis-dependent and SAM synthesis-independent mechanisms 37 Methylation cycle and folate cycle cooperates to regulate DA1877-mediated developmental acceleration 38 Figures 40 Figure 1. sams-1 participates in methylation cycle 40 Figure 2. sams-1 plays an important role in mediating the lipid level 42 Figure 3. sams-1 mutants showed enlarged lipid droplets in intestine visualized by DHS-3::GFP 43 Figure 4. Western blot analysis of differentially regulated SAMS-1 expression by different diets 44 Figure 5. The lipid regulatory effect of SAM supplementation at different concentration in wild type and sams-1 on the OP50 diet 45 Figure 6. SAMS-1 is present in the nuclei of intestine and hypodermis in both DA1877- and OP50 –fed worms 48 Figure 7. The DA1877 diet did not reduce the lipid content in mutants defective in lin-53, set-2 or set-30 49 Figure 8. The large vacuoles in mutants differ in sams-1 and /or blmp-1 in OP50 or DA1877 diets. 51 Figure 9. SAM supplement accelerates growth rate in OP50-fed worms 53 Figure 10. sams-1 is required for DA1877-mediated developmental rate acceleration via a SAM-dependent and SAM-independent pathway 54 Figure 11. The methylation cycle and folate cycle cooperated to regulate developmental rate acceleration. 55 Figure 12. Diet DA1877 regulates sams-1-dependent epigenetic modification for lipid reduction and developmental acceleration 56 Supplementary 58 sams-1 transcriptionally regulated blmp-1 59 Supplementary 1. sams-1 regulated blmp-1 transcriptionally 61 Supplementary 2 62 Discussion 63 sams-1透過合成SAM的機制,參與DA1877飲食造成的脂肪減少及生長加速 63 sams-1 具有合成SAM以外的功能 64 sams-1如何調控脂肪含量 64 DA1877飲食如何調控線蟲體內的sams-1路徑造成脂肪含量下降與生長加速 65 blmp-1除了抑制sams-1表現外還可能有其他的調控方式 66 SAMS-1受飲食影響在特定細胞中調控blmp-1的表現 68 Conclusion 69 References 70 | |
| dc.language.iso | en | |
| dc.title | 細菌飲食經由表觀遺傳調控線蟲脂肪含量及生長速度 | zh_TW |
| dc.title | Epigenetic control of C. elegans fat storage and developmental rate by bacterial diet | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 金翠庭(Tsiu-Ting Ching),許翱麟(Ao-Lin Hsu) | |
| dc.subject.keyword | 秀麗隱桿線蟲,DA1877,sams-1,脂肪調控,生長速度,表觀遺傳, | zh_TW |
| dc.subject.keyword | C. elegans,DA1877,sams-1,lipid regulation,developmental rate,epigenetic, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201702386 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-03 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
