Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20595
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor(Chung Wen Lan)
dc.contributor.authorTapas Jainen
dc.contributor.author詹德培zh_TW
dc.date.accessioned2021-06-08T02:54:39Z-
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-08-08
dc.identifier.citation[1] Y.M. Yang, A. Yu, B. Hsu, W.C. Hsu, A. Yang, C.W. Lan. Development of high-performance multicrystalline silicon for photovoltaic industry, Progress in Photovoltaics: Research and Applications 23 (2015) 340-351.
[2] R.R. Prakash, K. Jiptner, J. Chen, Y. Miyamura, H. Harada, T. Sekiguchi. Grain boundary interactions in multicrystalline silicon grown from small randomly oriented seeds, Applied Physics Express 8 (2015) 035502.
[3] A. Autruffe, R. Søndenå, L. Vines, L. Arnberg, M. Di Sabatino. Influence of pulling rate on multicrystalline silicon ingots' properties, Journal of Crystal Growth 386 (2014) 199-203.
[4] B. Gallien, T. Duffar, S. Lay, F. Robaut. Analysis of grain orientation in cold crucible continuous casting of photovoltaic Si, Journal of Crystal Growth 318 (2011) 208-211.
[5] A. Voigt, E. Wolf, H. Strunk. Grain orientation and grain boundaries in cast multicrystalline silicon, Materials science and engineering B 54 (1998) 202-206.
[6] V. Randle, H. Davies. A comparison between three-dimensional and two-dimensional grain boundary plane analysis, Ultramicroscopy 90 (2002) 153-162.
[7] V. Randle, P. Davies, B. Hulm. Grain-boundary plane reorientation in copper, Philosophical Magazine A 79 (1999) 305-316.
[8] Y.T. Wong, C. Hsu, C.W. Lan. Development of grain structures of multi-crystalline silicon from randomly orientated seeds in directional solidification, Journal of Crystal Growth 387 (2014) 10-15.
[9] M. Kronberg, F. Wilson. Secondary recrystallization in copper, AIME TRANS 185 (1949) 501-514.
[10] N. Fletcher. CRYSTAL INTERFACE MODELS--A CRITICAL SURVEY, (1971).
[11] A. Andrejeva, G. Salnikov, L. Fionova. Grain boundary faceting in niobium of high purity, Acta Metallurgica 26 (1978) 1331-1336.
[12] M. Finnis. Accessing the excess: an atomistic approach to excesses at planar defects and dislocations in ordered compounds, Physica status solidi (a) 166 (1998) 397-416.
[13] D. Brandon, B. Ralph, S.t. Ranganathan, M. Wald. A field ion microscope study of atomic configuration at grain boundaries, Acta metallurgica 12 (1964) 813-821.
[14] Y. Ishida, M. McLean. Burgers vectors of boundary dislocations in ordered grain boundaries of cubic metals, Philosophical Magazine 27 (1973) 1125-1134.
[15] M. Déchamps, F. Baribier, A. Marrouche. Grain-boundaries: criteria of specialness and deviation from CSL misorientation, Acta metallurgica 35 (1987) 101-107.
[16] G. Palumbo, K. Aust, E. Lehockey, U. Erb, P. Lin. On a more restrictive geometric criterion for “special” CSL grain boundaries, Scripta materialia 38 (1998) 1685-1690.
[17] Application of the Rodrigues vector to tilt and twist components of a grain boundary, Philosophical Magazine Letters 66 (1992) 307-312.
[18] Y. Amouyal, E. Rabkin, Y. Mishin. Correlation between grain boundary energy and geometry in Ni-rich NiAl, Acta Materialia 53 (2005) 3795-3805.
[19] V.A. Oliveira, B. Marie, C. Cayron, M. Marinova, M.G. Tsoutsouva, H.C. Sio, T.A. Lafford, J. Baruchel, G. Audoit, A. Grenier, T.N.T. Thi, D. Camel. Formation mechanism and properties of twinned structures in (111) seeded directionally solidified solar grade silicon, Acta Materialia 121 (2016) 24-36.
[20] V. Oliveira, B. Marie, C. Cayron, M. Marinova, M. Tsoutsouva, H. Sio, T. Lafford, J. Baruchel, G. Audoit, A. Grenier. Formation mechanism and properties of twinned structures in (111) seeded directionally solidified solar grade silicon, Acta Materialia 121 (2016) 24-36.
[21] T. Duffar, A. Nadri. On the twinning occurrence in bulk semiconductor crystal growth, Scripta Materialia 62 (2010) 955-960.
[22] H.K. Lin, C.W. Lan. Revisiting the twinning mechanism in directional solidification of multi-crystalline silicon sheet, Acta Materialia 131 (2017) 1-10.
[23] A. Tandjaoui, N. Mangelinck-Noel, G. Reinhart, B. Billia, T. Lafford, J. Baruchel. Investigation of grain boundary grooves at the solid–liquid interface during directional solidification of multi-crystalline silicon: in situ characterization by X-ray imaging, Journal of Crystal Growth 377 (2013) 203-211.
[24] W. Bollmann. Crystal Defects and Crystalline Interfaces, 1970.
[25] L. Gránásy, T. Pusztai, T. Börzsönyi, J.A. Warren, J.F. Douglas. A general mechanism of polycrystalline growth, Nature materials 3 (2004) 645-650.
[26] R. Kobayashi, J.A. Warren, W.C. Carter. A continuum model of grain boundaries, Physica D: Nonlinear Phenomena 140 (2000) 141-150.
[27] T. Pusztai, G. Bortel, L. Gránásy. Phase field theory of polycrystalline solidification in three dimensions, EPL (Europhysics Letters) 71 (2005) 131.
[28] J.A. Warren, R. Kobayashi, A.E. Lobkovsky, W.C. Carter. Extending phase field models of solidification to polycrystalline materials, Acta Materialia 51 (2003) 6035-6058.
[29] Effect of Σ3 generation on random grain boundaries in multicrystalline silicon, Superlattices and Microstructures 99 (2016) 136.
[30] L.-Q. Chen, W. Yang. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Physical Review B 50 (1994) 15752.
[31] I. Steinbach, F. Pezzolla. A generalized field method for multiphase transformations using interface fields, Physica D: Nonlinear Phenomena 134 (1999) 385-393.
[32] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L. Rezende. A phase field concept for multiphase systems, Physica D: Nonlinear Phenomena 94 (1996) 135-147.
[33] K. Ankit, B. Nestler, M. Selzer, M. Reichardt. Phase-field study of grain boundary tracking behavior in crack-seal microstructures, Contributions to Mineralogy and Petrology 166 (2013) 1709-1723.
[34] P. Chen, Y.L. Tsai, C. Lan. Phase field modeling of growth competition of silicon grains, Acta materialia 56 (2008) 4114-4122.
[35] L. Gránásy, L. Rátkai, A. Szállás, B. Korbuly, G.I. Tóth, L. Környei, T. Pusztai. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review, Metallurgical and Materials Transactions A 45 (2014) 1694-1719.
[36] W. Miller, A. Popescu, G. Cantu. Solidification of multicrystalline silicon—simulation of micro-structures, Journal of Crystal Growth 385 (2014) 127-133.
[37] F. Wendler, C. Mennerich, B. Nestler. A phase-field model for polycrystalline thin film growth, Journal of Crystal Growth 327 (2011) 189-201.
[38] A. Karma, W.-J. Rappel. Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical review E 57 (1998) 4323.
[39] H. Lin, H. Chen, C. Lan. Phase field modeling of facet formation during directional solidification of silicon film, Journal of Crystal Growth 385 (2014) 134-139.
[40] H.K. Lin, M.C. Wu, C.C. Chen, C.W. Lan. Evolution of grain structures during directional solidification of silicon wafers, Journal of Crystal Growth 439 (2016) 40-46.
[41] C.W. Lan, C.C. Liu, C.M. Hsu. An adaptive finite volume method for incompressible heat flow problems in solidification, J. Comput. Phys. 178 (2002) 464-497.
[42] W. Read, W. Shockley. Dislocation models of crystal grain boundaries, Physical Review 78 (1950) 275.
[43] M. Kohyama, R. Yamamoto, M. Doyama. Structures and Energies of Symmetrical〈 011〉 Tilt Grain Boundaries in Silicon, physica status solidi (b) 137 (1986) 11-20.
[44] J.T.M. De Hosson, V. Vitek. Atomic structure of (111) twist grain boundaries in fcc metals, Philosophical Magazine A 61 (1990) 305-327.
[45] G. Gottstein, L.S. Shvindlerman. Grain boundary migration in metals: thermodynamics, kinetics, applications, CRC press, 2009.
[46] G.S. Grest, D.J. Srolovitz, M.P. Anderson. Computer simulation of grain growth—IV. Anisotropic grain boundary energies, Acta Metallurgica 33 (1985) 509-520.
[47] K.G. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.J. Plimpton, P.M. Derlet. Computing the mobility of grain boundaries, Nature materials 5 (2006) 124-127.
[48] D. Molodov, L. Barrales-Mora, J. Brandenburg. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations. IOP Conference Series: Materials Science and Engineering, vol. 89: IOP Publishing, 2015. p.012008.
[49] C.C. Chen, C.W. Lan. Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling, J. Cryst. Growth 311 (2009) 702-706.
[50] C.C. Liu. Adaptive Finite Volume Methods for Solidification Problems, National Taiwan University, Master Thesis (2000).
[51] C.M. Hsu. Adaptive Phase Field Simulation of Dendritic Crystal Growth in a Forced Flow, National Taiwan University, Master Thesis (2001).
[52] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Control of Grain Boundary Propagation in Mono-Like Si: Utilization of Functional Grain Boundaries, Applied Physics Express 6 (2013) 025505.
[53] J.J. Bacmann, A.M. Papon, M. Petit, G. Silvestre. Study of ∊ = 5 (130) symmetrical tilt boundary structure in germanium, Philosophical Magazine A 51 (1985) 697-713.
[54] M. Kohyama, R. Yamamoto, Y. Ebata, M. Kinoshita. The atomic and electronic structure of a (001) tilt grain boundary in Si, Journal of Physics C: Solid State Physics 21 (1988) 3205.
[55] M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson. Energy of slip transmission and nucleation at grain boundaries, Acta Materialia 59 (2011) 283-296.
[56] M.A. Tschopp, S.P. Coleman, D.L. McDowell. Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals), Integrating Materials and Manufacturing Innovation 4 (2015) 11.
[57] V. Randle. The role of the coincidence site lattice in grain boundary engineering, Maney Pub, 1996.
[58] K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, K. Nakajima. Formation mechanism of parallel twins related to Si-facetted dendrite growth, Scripta Materialia 57 (2007) 81-84.
[59] U. Noritaka, K. Kentaro, S. Takamasa, F. Kozo, P. Wugen, N. Yoshitaro, S. Toetsu, N. Kazuo. Realization of Bulk Multicrystalline Silicon with Controlled Grain Boundaries by Utilizing Spontaneous Modification of Grain Boundary Configuration, Japanese Journal of Applied Physics 45 (2006) 1734.
[60] P.J. Clemm, J.C. Fisher. The influence of grain boundaries on the nucleation of secondary phases, Acta Metallurgica 3 (1955) 70-73.
[61] V. Voronkov. Processes at the boundary of a crystallization front, Sov. Phys. Crystallogr. 19 (1975) 573-577.
[62] D.T.J. Hurle. A Mechanism for Twin Formation during Czochralski and Encapsulated Vertical Bridgman Growth of Iii-V Compound Semiconductors, Journal of Crystal Growth 147 (1995) 239-250.
[63] H.K. Lin, C.W. Lan. Phase field modeling of grain structure evolution during directional solidification of multi-crystalline silicon sheet, Journal of Crystal Growth 475 (2017) 150-157.
[64] A. Otsuki. Energies of (001) twist grain boundaries in silicon, Acta Materialia 49 (2001) 1737-1745.
[65] R. Hull. Properties of crystalline silicon, IET, 1999.
[66] F. Hussain, S.S. Hayat, Z.A. Shah, S. Ahmad. Effect of Crystal Defects on the Melting Temperature of Ni and Al, Chinese Journal of Physics 51 (2013) 347-358.
[67] L. Mei, S.-W. Chan. Enthalpy and entropy of twin boundaries in superconducting Y Ba 2 Cu 3 O 7− x, Journal of applied physics 98 (2005) 033908.
[68] Y. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally. Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001), Phys Rev Lett 65 (1990) 1020-1023.
[69] H.K. Lin, C.W. Lan. A multilayer nucleation model for twinning during directional solidification of multi-crystalline silicon, (2017).
[70] M.G. Tsoutsouva, T. Riberi – Béridot, G. Regula, G. Reinhart, J. Baruchel, F. Guittonneau, L. Barrallier, N. Mangelinck-Noël. In situ investigation of the structural defect generation and evolution during the directional solidification of 〈110〉 seeded growth Si, Acta Materialia 115 (2016) 210-223.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20595-
dc.description.abstractThe development of grain structures during directional solidification of multi-crystalline silicon (mc-Si) plays a crucial role in the materials quality for silicon solar cells. Three dimensional (3D) phase field modelling of the grain boundary (GB) interaction and evolution by considering anisotropic GB energy and mobility for mc-Si is thus carried out to elucidate the process. We also describe a method to find the GB planes formed between two neighboring grains. The energy and mobility of GBs are allowed to depend on misorientation and grain boundary plane. To examine the correctness of our method, we run a test to check the grain boundary interaction and evolution verifying the known CSL combinations such as: (Σ a+Σ b → Σ a x b) or (Σ a +Σ b→Σ a/b). We further discuss how the knowledge of GB normal allows characterizing a grain boundary into a Tilt GB or a Twist GB. In this study, we have taken a simple approach using vectors to investigate GB interactions in mc-Si. GB interaction between Tilt and Twist boundaries is also shown. Two experimental scenarios are considered for comparison and the results are in agreement with experimental observations as well as theoretical predictions.
We further propose a model to explain the formation mechanism of twin grains at the three-grain tri-junction (3GTJ) on the growth interface during directional solidification of multi-crystalline silicon. We also attempt to confirm its validity by comparing with the experimental results. This model is an extension of the previous model for 2D nucleation at the grain boundaries (GBs). It is found that the energy barriers for faceting and twinning nucleus at the 3GTJ are much smaller than that at GBs. As a result, a higher twinning probability can be obtained at a much lower undercooling. Two types of tri-junctions are considered according to the experiments and the dominant factors which decide the twinning probability on each facets at the 3GTJ are further discussed. We further extend this model to multi-layer twinning which seems to be another route for the twin grain to grow after nucleation, and the undercooling for twinning with different layers is estimated.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:54:39Z (GMT). No. of bitstreams: 1
ntu-106-R04524098-1.pdf: 3288668 bytes, checksum: 2dd3518fbaebf5cbf43dbbda8c0d6199 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAbstract…………… I
Table of Contents III
Nomenclature……. V
List of Tables…. IX
List of Figures….. XI
Chapter 1. Introduction 1
Chapter 2. Literature Reviews 4
2-1 Introduction to Grain Boundaries 4
2-1-1 Crystallographic Description of Grain Boundaries 4
2-2 Types of Grain boundaries 6
2-2-1 Coincident Site Lattice (CSL) GBs 6
2-2-2 Symmetric and Asymmetric GBs 9
2-2-3 Coherent and Incoherent GBs 10
2-2-4 Tilt and Twist GBs 12
2-3 Nucleation and Twinning 16
2-4 Phase-field Model 20
2-5 Motivation and thesis outline 22
Chapter 3. Phase Field Model and Numerical Methods 24
3-1 Phase Field Model for polycrystalline growth 24
3-2 Determining the Grain Boundary Plane 28
3-3 Anisotropic Grain Boundary Energy 33
3-4 Anisotropic Grain Boundary Mobility 35
3-5 Numerical Methods 37
3-5-1 Adaptive Mesh Refinement 37
3-5-2 Finite Volume Method (FVM) 39
Chapter 4. Simulation Results of GB Interaction 43
4-1 Types of Grain Boundary Interactions 43
4-2 Interaction between Tilt and Twist Grain Boundaries 46
4-3 Simulating the GB interaction observed in experiments 48
4-3-1 GB interaction observed in Oliveira’s Experiment 48
4-3-2 GB interaction observed in Kutsukake’s Experiment 51
4-4 Limitations of our Model 55
Chapter 5. Twinning Mechanism 57
5-1 Introduction 57
5-2 The twinning model 59
5-3 Multilayer Twinning Model 66
5-4 Comparison with experimental data 70
Chapter 6. Conclusions and Future Directions 86
Appendix A 88
Appendix B 90
Bibliography 92
dc.language.isoen
dc.titleThree Dimensional Phase Field Modelling of Grain Boundary Interaction and Evolution during Directional Solidification of Multi-Crystalline Siliconzh_TW
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高振宏,廖英志,陳志鴻,陳俊杉
dc.subject.keywordPhase Field Model,Grain boundary,Twinning,Nucleation,zh_TW
dc.relation.page97
dc.identifier.doi10.6342/NTU201702770
dc.rights.note未授權
dc.date.accepted2017-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved